Developing Efficient Ontology-based Systems
Using A-box Data from Running Applications

Heiko Paulheim! and Lars Meyer?

! Technische Universitit Darmstadt
Knowledge Engineering Group
paulheim@ke.tu-darmstadt.de

2 SAP Research
{lars.meyer}@sap.com

Abstract. Today, information is typically contained in different IT sys-
tems. Ontologies and semantic integration have been proposed for inte-
grating this information with the purpose of meaningful processing and
providing useful services on top of that information. As applications, at
the same time, modify the information during run-time, the information
to be integrated has a dynamic nature. In this paper, we discuss per-
formance aspects of integrating such dynamically changing A-box data
from running applications, point out several technical alternatives, and
present performance measures for those alternatives. We show how the
findings are applied in two different application examples.

1 Introduction

In a typical software landscape, information is contained in different systems
— databases, legacy systems, desktop applications, and so forth. As users have
to work with information from those different systems, integration is required.
For providing a meaningful, semantic integration, ontologies have been widely
discussed. There are several possible utilizations of such an integration, each
providing different benefits to end users [1]:

— On a semantic desktop, novel ways of searching for data in applications
are made possible by extracting semantically annotated information from
applications |2, 3].

— User interfaces can be automatically adapted according to the users’ needs
by having a reasoner analyze the Ul components, the data they contain, and
the user’s needs [4].

— Help on applications can be provided at run-time, adapted according to the
system’s current state and/or a user model [5, 6].

— Software components can be automatically integrated by having a reasoner
process events raised by different components and thereby coordinating user
interactions across different, heterogeneous components [7].

— Interactive, ontology-based visualizations of the information contained in dif-
ferent related applications can assist the user in fulfilling knowledge-intensive
tasks [8].

In all of those cases, the information is contained in running applications, which
means that it is highly dynamic and thus needs to be integrated at run-time.
Furthermore, reasoning on that data is essential for providing valuable informa-
tion to the end user. Thus, it is required that a reasoner has efficient access to the
data as its A-box. At the same time, user interaction is involved all of the cases,
which imposes strict requirements in terms of performance. Thus, high perfor-
mance mechanisms for reasoning on dynamic data from running applications are
needed.

With this paper, we investigate different architectural alternatives of build-
ing a systems which support efficient integration and reasoning about running
software applications, and we analyze the performance impact of the different
alternatives with respect to dynamic data. In two examples, we show how the
findings can be applied to improve the performance of real-world applications of
semantic integration.

The rest of this paper is structured as follows. In section 2, we introduce our
basic reasoning framework. Section 3 discusses different approaches for optimiza-
tion, which are evaluated in section 4. In section 5, we introduce two example
use cases for our framework and discuss how they benefit from the optimiza-
tion strategies. We conclude with a review on related work, a summary, and an
outlook on future work.

2 Basic Architecture

From our work in application integration, we have derived a generic architec-
ture for reasoning on running software applications. In [9], we have analyzed
two different basic architectural variants for providing A-box data from running
software components to a reasoner:

1. In a pushing approach, software components inform the reasoner about up-
dates, and the reasoner keeps an up-to-date representation in its own A-box,
which duplicates the original data contained in the different components.

2. In a pulling approach, the reasoner does not maintain an A-box. Instead, it
dynamically pulls instance data from the components whenever the evalua-
tion of a query demands for that instance data.

Our experiments have shown that only pulling approaches are feasible for
building a scalable solution [9]. The reason is that given a highly dynamic com-
ponent which changes its state quite frequently, the reasoner is kept busy with
processing the updates on its A-box. Once the update frequency exceeds a certain
threshold, the reasoner is overloaded and cannot answer any queries anymore.
On the other hand, many of those updates are unnecessary, e.g., if the same facts
are overwritten many times without being used in a query. A pulling approach
avoids those unnecessary updates, which only create system load without any
benefit.

Furthermore, maintaining an A-box with information which is also kept in
the system leads to an overhead due to double bookkeeping and can therefore

Component Container Component Container Component Container

Component 2 @

Component n @
Objects JJ

ObjectsJJJ

<

Component 1 @
Objects JJ

Component Adapter Component Adapter Component Adapter
URI Object URI Object URI Object
Factory Registry Factory Registry Factory Registry
Triple Triple Triple Triple Triple Triple
Factory Cache Factory Cache Factory Cache
A& L
\ query f—J query query
Y
5 || 8
2 g || 8
query > 2 S0 c =
about | | § g 53 5 < Ontology
- » 5 ° 2 ¢
running e a § 3 2 T-Box
- Q
system & -8 -$
Query & =
Client

Fig. 1. General architecture of our framework for reasoning about running applications.

cause consistency problems: with a pushing approach, the updates and queries
need to be properly queued in order to guarantee correct answers to each query.

Fig. 1 shows the basic building blocks of our framework. It depicts a number

of software components which are to be integrated. Each component (which we
treat as a black box) is encapsulated in a container, which provides an adapter
to the reasoner. The adapter consists of four essential parts:

Integrated components create and hold objects, which they register at the
adapter’s object registry to reveal them to the reasoner. Each component may
process different types of objects, and each type of object may be processed
by different components. There are different possible strategies of informing
the registry of updates of the registered objects (e.g., using the observer
pattern or change listeners); in our current implementation, the component
actively sends updates to the object registry.

From those objects, a triple factory creates data that is usable by the rea-
soner, i.e., RDF triples. The triple factory is also responsible for processing
mappings between the component’s class model and the ontology used for
information exchange. Those mappings are defined in a flexible, rule-based
language, which is also applicable for conceptually heterogeneous class mod-
els [10].

To create such triples, a URI is needed for each object. The URI factory
is responsible for creating such URIs which are unambiguous and unique
throughout the whole integrated system.

To improve performance, triples may be cached by the component. There
are different variants such as lazy or eager caches, which will we analyze in
more detail in the subsequent sections.

These adapters are used by the reasoner’s A-box connector to dynamically
resolve queries. In addition to that A-box connector, a T-box connector provides
the T-box part of the ontology (i.e., the definition of classes and relations) used as
a common ground for integrating information from the different components. In
contrast to the A-box, the T-box is considered as static, and the T-box connector
loads it once when the system starts.

The reasoner has a query interface that allows client components to pose
queries about the running system. Client components may be, e.g., internal
components, such as an event processing logic, as discussed in section 5.1, or
a graphical user interface providing an endpoint for querying the system, as dis-
cussed in section 5.2. The query interface may use languages such as SPARQL
or F-Logic. For the prototype implementation of our framework, we have used
OntoBroker [11] as a reasoner, and F-Logic [12] as a query language.

When a query runs, the results of that query have to be consistent. Thus,
updates occuring between the start of a query and its end should not be consid-
ered when computing the result. To provide such a consistent query answering
mechanism, the reasoner sends a lock signal to the component wrappers when
a query is started. Updates coming from the component are then queued until
the reasoner notifies the component that the query has been finished.

3 Aspects of Optimization

In the previous section, we have sketched the basic architecture of our system.
There are different variants of implementing that architecture. In [9], we have
discussed two basic aspects: centralized and decentralized processing, and using a
redundant A-box vs. using connectors for retrieving instance data at query time.
These results led to the architecture introduced in Sect. 2, using a centralized
reasoner and connectors for retrieving A-box data. In this section, we have a
closer look at two design aspects which allow several variations: the design of
the rules which make the reasoner invoke the A-box connector, and the use of
caches.

3.1 Design of Connector Invocation Rules

To make the reasoner invoke a connector, a rule is needed whose head indicates
the type of information the connector will deliver, and whose body contains a
statement for actually calling that connector. Technically, a connector is wired
to the reasoner with a predicate. For example, a connector providing instance
data for an object can be addressed with a generic rule as follows!:

instance_connector(?1,7C) =?C(?1). (1)
! We use the common SWRL human readable syntax for rules, although in SWRL,

variables are not allowed for predicates. In our implemented prototype, we have used
F-Logic for formulating the rules, which allows for using variables for predicates.

The reasoning framework, OntoBroker in our case, is responsible for dispatching
the use of the predicate instance_connector to an implementation of that con-
nector, i.e. a Java method. This method then provides a set of bindings for the
variables (in this case: 71 and ?C). If some of the variables are already bound,
the contract is that the method returns the valid bindings for the unbound vari-
ables which yield a true statement given the already bound ones. Consider the
following example query, asking for all instances of a class #Person:

SELECT ?I WHERE { 7I rdf:type #Person }

The resolution of this query leads to the invocation of rule 1 with the variable
?7C bound to #Person. The connector method now returns a set of bindings for
the variable ?I for which the statement #Person(?I) is true. The reasoner then
substitutes the results in the query and returns the result.

The mechanism defined in rule 1 is the most basic way of integrating a
connector which delivers information about instances and the classes they belong
to. As it has to be evaluated in each condition in a rule’s body where statements
like ?C(?I) occur (either unbound or with one or both of the variables bound),
the connector is invoked very frequently. Since invoking a connector may be a
relatively costly operation (even with caches involved, as described below), this
is a solution which may imply some performance issues.

A possible refinement is the use of additional constraints. The idea is that
for each integrated software component, the set of possible ontology classes the
data objects may belong to is known. Given that the union of those sets over all
components is #Class1 through #ClassN, the above rule can be refined to an
extended rule:

(equal(?C, #Classl) V equal (7C, #Class2)... V equal (?7C, #ClassN))
A instance_connector(?1,7C)
= 7C() (2)

Assuming a left to right order of evaluation of the rule’s body, the connector is
now only invoked in cases where the variable ?7C' is bound to one of the given
values. Therefore, the number of the connector’s invocations can be drastically
reduced.

A variant of that solution is the use of single rules instead of one large rule:

instance_connector(?1, #Classl) = #Class1(?I)
instance_connector(?1, #Class2) = #Class2(?I)

instance_connector (11, #ClassN) = #ClassN (?I) (3)

In that case, the connector is not always invoked when evaluating a statement
of type ?C(?I). Instead, each rule is only invoked for exactly one binding of 7C.
In the example query above, only the first rule’s body would be evaluated at all,
invoking the connector once with one bound variable. On the other hand, the
number of rules the reasoner has to evaluate for answering a query is increased.

query (@

Cache entries are
invalidated when

Cache entries are
replaced when

Component
Adapter

Queries are passed
through to the

Component
Adapter
Component
Adapter

S original component < updates occur updates occur
h
> > e
g g El
o o o
5 - 5
X0 3t x
o o o
82 o2 82
c c c
< o < Q < o
o (&) O

(a) Without cache (b) Eager cache

—
o
~

Lazy cache

Fig. 2. Different variants for using caches

The above example rules show how to invoke the instance_connector wrap-
per, which returns statements about category membership of instances. The
other important is relation_connector(?X, 7R, ?Y"), which has three variables. It
returns the set of all triples where object 7X is in relation 7R with object Y.
As for the instance_connector wrapper, the corresponding types of invocation
rules exist.

For this paper, we have analyzed the performance impact of all three rule
types: the generic rule (1), the use of an extended rule (2), and the use of single
rules (3).

3.2 Distributed Caching of A-Box Fragments

To speed up the answer of our connectors, partly caching instance data in the
connector is a good strategy [13], although it slightly contradicts to the idea
of avoiding double bookkeeping — it is the classic trade-off of redundancy vs.
performance. We have analyzed three different variants: using no caches at all,
i.e., each query for instance data is directly passed to the underlying objects,
and statements are assembled at query time (see Fig. 2(a)); and using eager and
lazy caching. While the eager cache updates the required statements for each
object when that object changes (see Fig. 2(b)), the lazy cache flags statements
as invalid upon change of the represented object, and re-creates them only if
they are requested (see Fig. 2(c)).

While using no caches at all avoids unnecessary workload when an update
occurs, eager caches are supposed to be the fastest to respond to queries. Lazy
caches can provide a compromise between the two, allowing fast responses to
queries as well as avoiding unnecessary workload. In the next section, we will
analyze those effects in more detail.

Description Query in SPARQL

1 Get all objects of type C' |[SELECT ?I WHERE {?I rdf:type C.}

2a |Get all objects of type C' |SELECT ?I WHERE {?I rdf:type C. ?I R 0.}
2b |in a relation R with SELECT ?I WHERE {7I rdf:type C. O R 7I.}
2a+b|object O SELECT ?I WHERE {{?I rdf:type C. ?I R 0.}
UNION {?I rdf:type C. O R ?I.}}

3a |Get all objects of type C' |SELECT ?I WHERE {?I rdf:type C. ?I 7R 0.}
3b |in any relation with SELECT ?I WHERE {?I rdf:type C. 0 7R 7I.}
3a+b|object O SELECT ?I WHERE {{?I rdf:type C. ?I 7R 0.}
UNION {?I rdf:type C. 0 ?R ?I.}}

4a |Get all objects of any SELECT ?I WHERE {?I R 0.}

4b |type in a relation R with |SELECT ?I WHERE {0 R ?7I.}

4a+blobject O SELECT ?I WHERE {{?I R 0.} UNION {O R ?I.}}
5a |Get all objects of any SELECT ?I WHERE {?I 7R 0.}

5b |type in any relation with |[SELECT ?I WHERE {0 7R ?7I.}

5a+b|object O SELECT ?I WHERE {{?I 7R 0.}

UNION {0 7R ?7I.}}

Table 1. The different query types we used to analyze the performance impact of
different variants, and their SPARQL representation.

4 Evaluation

4.1 Query Times

In this section, we analyze the performance impact of the different connector
rule and caching variants on different reasoning tasks which involve information
about and in the running system. We have examined both the query times for
different query types, as well as the maximum degree of dynamics, i.e. the mazx-
imum frequency of updates to the A-box which can be handled by the different
implementation variants.

4.2 Setup

To evaluate the impact of the different variants, we have analyzed various el-
ementary query types, as shown in table 1. The queries were selected to cover
a variety of cases with known or unknown predicate types, as well as known
or unknown type restrictions for the queried objects. For each query, we have
measured the average time to process that query. All tests have been carried
out on a Windows XP 64Bit PC with an Intel Core Duo 3.00GHz processor and
4GB of RAM, using Java 1.6 and OntoBroker 5.3.

The variables in our evaluation are the number of software components (5,
10, and 20), the number of object instances maintained by each component (250
and 500, randomly distributed over 10 classes per component), and the average
update frequency (25 and 50 updates per second). Each instance has been given
5 relations to other instances. Therefore, our maximum test set has 10000 object

instances with 50000 relations. As our focus is on dynamic data, we altered the
data at a frequency of 50 updates per second in the first set of evaluations.

In Fig. 3, we show the results of selected typical queries, which illustrate the
main findings of our analysis?. While the figure depicts the results for the a + b
flavor of each query type (see table 1), the results for the a and b flavor are
similar.

Generally, the query times using eager caching are faster than those using
lazy caching. The actual factor between the two ranges from double speed (e.g.,
in case of type 4 queries) to only marginal improvements (e.g., in case of type
3 queries). Since lazy caches have to re-create the invalidated triples to answer
a query, eager caches can always serve the requested triples directly. Therefore,
the latter can answer queries faster.

When looking at scalability, it can be observed that doubling the number
of integrated components (which also doubles the number of A-box instances)
about doubles the query answer time in most cases, thus, there is a linear growth
of complexity in most cases.

Multiple observations can be made when looking at the individual results
regarding different queries. For type 3 queries, it is single rules which produce
significant outliers (see Fig. 3(b)), while for type 5 queries, it is generic rules (see
Fig. 3(d)). Thus, only only extended rules guarantee reasonable response times
in all cases without any outliers, although they are outperformed by generic rules
in type 2 and 4 queries.

In case of type 1, 2 and 4 queries, the relation in which the objects sought
is already fixed (e.g., “find all persons which are married to another person”),
while the case of type 3 and 5 queries, the relation is variable (e.g., “find all
persons which have any relation to another person”). The first type of query is
rather target-oriented, while the latter is rather explorative. The key finding of
the results is that target-oriented queries do not pose any significant problems,
while explorative queries do.

The bad behavior of single rules in the case of explorative queries can be
explained by the fact that when an explorative query is answered, the various
single rules fire, thus causing many potentially expensive invocations of the con-
nector — for N components and M types, an explorative query may cause up
to O(N x M) connector invocations. The generic and extended rules, on the
other hand, invoke the connector less often. For a similar reason, the generic
rule variant behaves badly for the explorative query types: here, the reasoner
determines the possible relation types by invoking the wrapper multiple times,
each time trying another relation type. Extended and single rules, on the other
hand, already restrict the relation types in the rule body, thus requiring less
invocations of the wrapper.

2 Type 1 queries are not shown; they are generally answered very quickly, and there
are no significant differences between the approaches.

4.3 Maximum Frequency of A-box Updates

Besides the time it takes to answer a query, another important performance cri-
terion is the robustness of the system regarding A-box dynamics. While the rule
design only influences the query times as such, a careful design of the wrappers’
caches has a significant impact on the system’s scalability with respect to the
maximum possible frequency of A-box updates, as shown in Fig. 4.

The figure shows that while both eager and lazy caches do not drop in per-
formance too strongly when scaling up the number of instances involved, lazy
caching is drastically more robust regarding A-box dynamics. While several thou-
sand updates per second on the A-box are possible with lazy caching, eager
caching allows for less than 100. As assumed, lazy caches thus scale up much
better regarding a-box dynamics, but at the trade-off of longer query response
times, as shown above.

5 Examples

To illustrate the relevance of the findings presented in the previous sections,
we introduce two examples: one using goal-directed and one using explorative
queries.

5.1 Example for Goal-Directed Queries: Semantic Event Processing

In [14], we have discussed the use of ontologies for application integration on
the user interface level. The approach relies on using ontologies for formally
describing user interface components and the information objects they process.
Reasoning is used to facilitate semantic event processing as an indirection for
decoupling the integrated applications [9].

By annotating the events produced by different user interface components, a
reasoner can analyze those events, compute possible reactions by other compo-
nents, and notify those components for triggering those reactions. This reason-
ing process requires instance information about the different applications, their
states, and the data they process, which is delivered by the framework explained
in Sect. 2.

An example for an integration rule could state the following: “When the user
performs a select action with an object representing a customer who has an
address, the address book component will display that address, if it is visible
on the screen.” If this rule is evaluated by a reasoner, it has to be able to
validate certain conditions, e.g. whether there is an address book component
which is visible, or whether the customer in question has an address. It therefore
needs access to information about both the system’s components as well as the
information objects they process. More sophisticated reasoning may come into
place, e.g., when implementing different behaviors for standard and for premium
customers, where the distinction between the two may involve the evaluation of
different business rules.

3500 10000
= @l= Generic Rule, 9000 = &l= Generic Rule,
3000 Eager Cache Eager Cache
8000
2500 === Generic Rule, === Generic Rule,
T 7000
Lazy Cache Lazy Cache
2000 ——h- ded Rule, 6000 === Extended Rule,
Eager Cache 5000 Eager Cache
1500
g Extended Rule, 4000 et Extended Rule,
1000 Lazy Cache 3000 Lazy Cache
= @= Single Rules, 2000 - @~ Single Rules,
500 + Eager Cache 1000 Eager Cache
) ; ; , =@ Single Rules, 0 . . , =@ Single Rules,
Lazy Cache Lazy Cache
5 10 15 20 5 10 15 20
(a) Query type 2a+b (b) Query type 3a+b
3000 100000 7
= &= Generic Rule, 90000 / 1 = &= Generic Rule,
Eager Cache n Eager Cache
2500 80000 ’
—@— Generic Rule, / ,’ & Generic Rule,
2000 Lazy Cache 70000 -, Lazy Cache
2
== Extended Rule, 60000 /! == Extended Rule,
1500 Eager Cache 50000 ,' Eager Cache
e—p— Extended Rule, 40000 - =t Extended Rule,
1000 Lazy Cache 30000 Lazy Cache
- @= Single Rules, 20000 - @~ Single Rules,
500 Cach Cach:
Eager Cache 10000 - Eager Cache
0! . . . —e—Single Rules, 0 SESS=R = —e—Single Rules,
Lazy Cache Lazy Cache
5 10 15 20 5 10 15 20
(c) Query type 4a+b (d) Query type 5a+b

Fig. 3. Query times for selected query types, each for 500 object instances per compo-
nent, and 50 updates per second. The x axis shows the number of components (there
have been no explicit measurements for 15 components), and the y axis shows the
query time in seconds.

A typical query used for event processing asks: given a particular event #E,
which other events are triggered by that event:

SELECT ?E1 WHERE {7El #triggeredBy #E.}

Thus, the predicate is fixed, and the query is goal-directed. As discussed for
the general results above, we have experienced that the different invocation rule
variants do not affect performance too much, while eager caching leads to a
significant speed-up. Details on the example can be found in [9)].

5.2 Example for Explorative Queries: Semantic Data Visualization

Gathering and aggregating information from different IT systems can be a cum-
bersome and time consuming task for the end user. Combining that data with
a reasoner can provide direct benefit for the end user.

In [8], we have introduced the Semantic Data Ezplorer. The Semantic Data
Explorer provides a uniform graphical visualization of the data contained from
applications using a central reasoning module, using the architecture discussed

100000

10000 -

o

o

Q

$ 1000 -

S~

)

[

3

3 100 -

Q

S

3 10

= O Eager Cache

1 4 M Lazy Cache
\®°"7 \’5"9 \’?f’{7 \'?f’(o \75’ \%L’C’
C C C C C C
2 & & & ‘ &
& & & & & <
& & & & & &
& N S N S N
2 2 2 3 2 2
& & & S & &
N & & & N N
DA A
\ N o o \
0&‘7 eé@ Q‘?f& Q}& (&é\ e,é@
& & 9 & O &
& & & & & &
Sy (GRS (G
) i) N S

Fig. 4. Evaluation of robustness of different caching approaches regarding A-box dy-
namics. The graph shows the maximum number of updates per second that the system
can process. Note that the y-axis has a logarithmic scale.

above. The user can drag objects from connected applications to the Semantic
Data Explorer and navigate the corresponding graph view.

The Semantic Data Explorer uses the reasoner as an indirection for construct-
ing the graph view. From an implementation point of view, this architecture pro-
vides a decoupling of the visualization and the data sources. More importantly,
the reasoner may also reveal implicit knowledge gathered from the A-box infor-
mation using T-box axioms and rules. This implicit knowledge is then included
in the visualization as well, providing additional value to the end user.

A user study has shown that the Semantic Data Explorer can lead to sig-
nificantly faster task completion times when gathering information, as well as
to enhanced user satisfaction®. Implementation details on the tool, as well as a
detailed description of the user study can be found in [8].

Displaying a node in the Semantic Data Explorer requires finding all incoming
and outgoing edges to other objects and data properties. Thus, the underlying
queries are explorative:

SELECT 7R 7V WHERE {<#x> 7R 7V}
SELECT 7R 7V WHERE {7V 7R <#x>}

The results above advise to use extended rules for this sort of queries. In fact,
experiments with the SDE showed that using an extended rule leads to a per-
ceivably faster system, which in turn increases the end users’ satisfaction.

3 A demo video is available at http://soknos.de/index.php?id=470&L=0.

6 Related Work

One of the best researched approaches for reasoning on objects from integrated
systems is the use of so-called wrappers [11] or mediators [13], which collect
objects from databases or structured documents and provide them to a reasoner
as instance data.

D2RQ@ [15] is an example for a wrapper platform that integrates standard,
non-RDF databases as RDF data sources and thus makes them available to a
reasoner. Based on mapping rules, data entries from database tables are lifted as
RDF instance data. The authors present an evaluation based on different query
types that shows that retrieval of the data is feasible in reasonable time.

Lizto [16] is an example that uses wrappers to gather RDF data from non-
annotated web pages. It provides graphical interfaces for defining the mechanisms
used to extract data from the HTML documents. The authors show different use
cases where RDF data gathered from the web is utilized. Those applications do
not perform the retrieval at run-time, but offline, i.e. they parse web sites and
build an RDF data store. The user’s queries are then posed against that RDF
data store.

OntoBroker [11] is a reasoning engine that provides different means for inte-
grating data from various sources, including access to databases, web pages and
web services via so-called connectors. As the API also foresees the integration of
own connectors accessing arbitrary sources of instance data, we have based the
prototype described in this paper on OntoBroker.

Various approaches have been proposed for directly accessing objects of run-
ning software applications [17]. There are two main variants of making the in-
stance data known to the reasoner. The first relies on semantic annotation of the
underlying class models, such as sommer?* or otm-j [18]. The second uses class
models generated directly from an ontology, with the necessary access classes for
reasoning access being generated as well, such as RDFReactor [19], or OntoJava
[20]. With dynamically typed scripting languages, the corresponding classes may
also be generated on the fly, as shown, e.g., with Tramp® for Python. A detailed
comparison of such approaches is given in [10]. However, analyses of efficiency
and scalability of these approaches are rarely found.

Most of those approaches are not very flexible with respect to conceptual
heterogeneity (i.e., class models that are different from the common ontology
used for integration) as well as technological heterogeneity (i.e., using class mod-
els in different programming languages in parallel). The framework discussed
in this paper uses flexible mapping rules and allows for containers for different
programming languages [10, 21].

One of the best-known and most compelling application of making data from
various applications known to a reasoner is the semantic desktop [3]. It allows
users to browse, analyze, and relate data stored in different applications and
provides new means of accessing data stored on a personal computer. Different

4 https://sommer.dev. java.net/
® http://wuw.aaronsw.com/2002/tramp/

adapters exist which wrap data from databases, file systems, or e-mail clients.
While there are various publications concerning impressive applications of the
semantic desktop as well as various architectural aspects, systematic approaches
of assessing the performance of the underyling technology are still hard to find.

7 Conclusion and Outlook

In this paper, we have introduced a framework for integrating dynamic A-box
data from running software system with a central reasoner. There are several
use cases for applying such a framework, e.g. searching information from dif-
ferent applications on a semantic desktop, dynamically adapting user interfaces
to users’ needs, or automatically integrating existing user interface components
to a seamless application at run-time. In all of those approaches, a reasoner is
used, which may need to have access to the data both contained in software
components as well as about those software components as such. As reasoning
is performed while those components are running, the A-box can be highly dy-
namic.

In most of the use cases of reasoning on dynamic systems sketched above,
good performance is an essential requirement, as user interactions are involved.
Based on the prototype implementation of our architecture, we have conducted
several experiments to evaluate the performance impact of different implemen-
tation variants. Those variants encompass different caching strategies as well as
the design of the rules from which the connectors are called. We have tested the
variants with 13 different query types.

In this paper, we have analyzed the performance impact of three different
rule types for rules invoking connectors to software components: generic rules,
extended rules, and single rules. In some test cases, the query answering times
even differ at a factor of 100 between the different approaches. This proves that
the design of rules has a significant impact on the system performance.

One major finding is that there is no solution that provides optimal results
for each usage scenario. In summary, we have shown that there are significant
differences between explorative and goal-directed queries: in the first case, queries
contain a fixed relation (e.g. “find all persons that are married to another per-
son”), while in the latter case, the relation is a variable (e.g. “find all persons that
have any relation to another person”). While some queries are handled almost
equally well by all three rule types, only extended rules guarantee reasonable
and stable query answering times in all cases. To illustrate the significance of
the results, we have introduced two example use cases, one using goal-directed
and one using explorative queries.

In addition, we have analyzed two different strategies for caching data in
the wrappers: eager and lazy caching. Eager caching allows for response times
up two twice as fast as lazy caching. On the other hand, lazy caching supports
much more dynamic A-boxes: eager caching only works for less than 100 A-box
updates per second, while with lazy caches, several thousand A-box updates per
second can be processed. Therefore, a trade-off between A-box dynamics and

query times can be identified. When implementing an actual system, a solution
should be chosen according to that system’s actual requirements.

In this paper, we have analyzed the performance effects using a set of ele-
mentary queries in this paper, and we have shown that different implementation
variants perform better or worse with certain query types. More complex query
types may reveal deeper insights into performance optimization of semantic ap-
plications.

While semantic technologies and reasoning on running software applications
allow for interesting and valuable functionality, poor performance can be — and
in fact often is — a show stopper. Thus, such applications should be carefully de-
signed in order to be adopted by end users on a larger scale. With this paper, we
have given insight in some strategies which can be carried over to the develop-
ment of high performance systems using semantic technology. We are confident
that this contribution will help developers of semantic web based software in
creating systems which be come widely accepted.

Acknowledgements

The work presented in this paper has been partly funded by the German Federal
Ministry of Education and Research under grant no. 01ISO7009 and 01IA08006.

References

1. Paulheim, H., Probst, F.: Ontology-Enhanced User Interfaces: A Survey. Interna-
tional Journal on Semantic Web and Information Systems 6(2) (2010) 36-59

2. Cheyer, A., Park, J., Giuli, R.: IRIS: Integrate. Relate. Infer. Share. [22]

3. Sauermann, L., Bernardi, A., Dengel, A.: Overview and Outlook on the Semantic
Desktop. [22]

4. Karim, S., Tjoa, A.M.: Towards the Use of Ontologies for Improving User Interac-
tion for People with Special Needs. In Miesenberger, K., Klaus, J., Zagler, W.L.,
Karshmer, A.L., eds.: ICCHP. Volume 4061 of Lecture Notes in Computer Science.,
Springer (2006) 77-84

5. Gribova, V.: Automatic Generation of Context-Sensitive Help Using a User Inter-
face Project. In Gladun, V.P., Markov, K.K., Voloshin, A.F., Ivanova, K.M., eds.:
Proceedings of the 8th International Conference ” Knowledge-Dialogue-Solution”.
Volume 2. (2007) 417-422

6. Kohlhase, A., Kohlhase, M.: Semantic Transparency in User Assistance Systems.
In: Proceedings of the 27th annual ACM international conference on Design of
Communication. Special Interest Group on Design of Communication (SIGDOC-
09), Bloomingtion,, IN, United States, ACM Special Interest Group for Design of
Communication, ACM Press (2009) 89-96

7. Paulheim, H.: Ontologies for User Interface Integration. In Bernstein, A., Karger,
D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K., eds.:
The Semantic Web - ISWC 2009. Volume 5823 of LNCS., Springer (2009) 973-981

8. Paulheim, H.: Improving the Usability of Integrated Applications by Using Visu-
alizations of Linked Data. In: Proceedings of the International Conference on Web
Intelligence, Mining and Semantics (WIMS’11). (2011)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Paulheim, H.: Efficient Semantic Event Processing: Lessons Learned in User In-
terface Integration. In Aroyo, L., Antoniou, G., Hyvonen, E., ten Teije, A., Stuck-
enschmidt, H., Cabral, L., Tudorache, T., eds.: The Semantic Web: Research and
Applications (ESWC 2010), Part II. Volume 6089 of LNCS., Springer (2010) 6074
Paulheim, H., Plendl, R., Probst, F., Oberle, D.: Mapping Pragmatic Class Models
to Reference Ontologies. In: The 2011 IEEE 27th International Conference on Data
Engineering Workshops - 2nd International Workshop on Data Engineering meets
the Semantic Web (DESWeb). (2011) 200-205

Decker, S., Erdmann, M., Fensel, D., Studer, R.: Ontobroker: Ontology Based
Access to Distributed and Semi-Structured Information. In Meersman, R., Tari,
Z., Stevens, S.M., eds.: Database Semantics - Semantic Issues in Multimedia Sys-
tems, IFIP T'C2/WG2.6 Eighth Working Conference on Database Semantics (DS-
8), Rotorua, New Zealand, January 4-8, 1999. Volume 138 of IFIP Conference
Proceedings., Kluwer (1999) 351-369

Angele, J., Lausen, G.: Ontologies in F-Logic. In Staab, S., Studer, R., eds.:
Handbook on Ontologies. International Handbooks on Information Systems. 2nd
edition edn. Springer (2009) 45-70

Wiederhold, G., Genesereth, M.: The Conceptual Basis for Mediation Services.
IEEE Expert 12(5) (sep/oct 1997) 38 —47

Paulheim, H., Probst, F.: Application Integration on the User Interface Level: an
Ontology-Based Approach. Data & Knowledge Engineering Journal 69(11) (2010)
1103-1116

Bizer, C., Seaborne, A.: D2RQ - Treating Non-RDF Databases as Virtual RDF
Graphs. In: ISWC2004 Posters. (November 2004)

Baumgartner, R., Eiter, T., Gottlob, G., Herzog, M., Koch, C.: Information Ex-
traction for the Semantic Web. In Eisinger, N., Maluszynski, J., eds.: Reasoning
Web. Volume 3564 of Lecture Notes in Computer Science., Springer (2005) 275-289
Puleston, C., Parsia, B., Cunningham, J., Rector, A.: Integrating Object-Oriented
and Ontological Representations: A Case Study in Java and OWL. In Sheth, A.P.,
Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.W., Thirunarayan, K.,
eds.: The Semantic Web - ISWC 2008. Volume 5318 of LNCS., Springer (2008)
130-145

Quasthoff, M., Meinel, C.: Semantic Web Admission Free - Obtaining RDF and
OWL Data from Application Source Code. In Kendall, E.F., Pan, J.Z., Sabbouh,
M., Stojanovic, L., Bontcheva, K., eds.: Proceedings of the 4th International Work-
shop on Semantic Web Enabled Software Engineering (SWESE). (2008)

Vélkel, M., Sure, Y.: RDFReactor - From Ontologies to Programmatic Data Ac-
cess. In: Posters and Demos at International Semantic Web Conference (ISWC)
2005, Galway, Ireland. (2005)

Eberhart, A.: Automatic Generation of Java/SQL Based Inference Engines from
RDF Schema and RuleML. In Horrocks, I., Hendler, J.A., eds.: The Semantic
Web - ISWC 2002, First International Semantic Web Conference, Sardinia, Italy,
June 9-12, 2002, Proceedings. Volume 2342 of Lecture Notes in Computer Science.,
Springer (2002) 102-116

Paulheim, H.: Seamlessly Integrated, but Loosely Coupled - Building Uls from
Heterogeneous Components. In: ASE ’10: Proceedings of the IEEE/ACM Inter-
national Conference on Automated Software Engineering, New York, NY, USA,
ACM (2010) 123-126

Decker, S., Park, J., Quan, D., Sauermann, L., eds.: Proceedings of the ISWC 2005
Workshop on The Semantic Desktop - Next Generation Information Management
& Collaboration Infrastructure. Volume 175 of CEUR-WS. (2005)

