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ABSTRACT
Recent Semantic Web research has been largely focused on precise
ontologies and knowledge representation, leaving only little space
for imprecise knowledge such as rules of thumb. The result is a
Semantic Web which can answer requests almost perfectly with
respect to precision, but provides only a low recall. In this position
paper, we envision to address this issue with a stack of Semantic
Web technologies that allow imprecise knowledge as an essential
ingredient.

Categories and Subject Descriptors
I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving—
Uncertainty, “fuzzy”, and probabilistic reasoning; I.2.6 [Artificial
Intelligence]: Learning—Induction

General Terms
Theory

Keywords
Semantic Web, Linked Open Data, Uncertainty Reasoning, Ma-
chine Learning

1. INTRODUCTION
During the evolution of mankind, imprecise knowledge has played
a vivid role in the survival of the human species. Every day, we
make quick decisions based on imprecise knowledge. For example,
the rule lions are dangerous has proven to be particularly useful for
the survival of our kind, and thus has been selected as a useful piece
of knowledge by the process of evolution. However, despite its use,
the rule lions are dangerous is not entirely precise, since there may
be single lions that are not dangerous, e.g., new born lion babies.

Research on the semantic web so far has been largely focused to-
wards building solutions that favor highly precise knowledge. Rea-
soners are built to be sound and complete. Ontology engineering
methodologies and design patterns are explored for making ontolo-
gies as precise as possible. The above example, formalized as the
subsumption axiom Lion v DangerousAnimal, would not be

allowed when using the OntoClean methodology [5] – with Lion
being a rigid class, but DangerousAnimal being non-rigid, one
of the central design principles would have been violated. A rigid
ontology engineering approach would state that the axiom lions are
dangerous is not always correct, and thus, it should not be part of a
precise ontology in order to avoid false reasoning results.

In other words: if our brains were ontology reasoners processing
completely precise ontologies, our species would have been long
gone from the surface of this planet.

In this paper, we argue that imprecise knowledge can add value to
the Semantic Web as we know it, and that it could be an essential
ingredient to building future semantic web applications. The rest of
this paper is structured as follows: section 2 introduces a number
of use cases of the Semantic Web which could benefit from impre-
cise knowledge. Section 3 discusses what a future Wemantic Web
incorporating imprecise knowledge could look like. In sections 4
and 6, we show some ongoing research on automatically discover-
ing and processing imprecise knowledge on the semantic web. We
conclude with a summary and an outlook on future research.

2. USE CASES FOR IMPRECISE KNOWL-
EDGE

In classical information retrieval, there is the well-known trade-off
of precision and recall: it is fairly simple to construct systems that
perform well on either of those metrics, but optimizing both at the
same time is a difficult task. As discussed above, semantic web
research has been largely focused on representing and processing
knowledge in a precise manner. Consequently, semantic web data
often suffers from a recall problem.

In their pre-studies to building the prestigious Watson project, re-
searchers at IBM also examined how approaches trying to look up
information on structured knowledge sources would perform as a
baseline. They reported that those approaches achieve a fairly high
precision, but the recall would have been too low to get to the im-
pressive results achieved by Watson – in fact, by only querying
sources like DBpedia, Watson would only have been able to answer
around 2% of the queries correctly [4, 7]. This shows that a good
query answering system should be able to allow for a reasonable
trade-off between precision and recall.

The same can be observed when experimenting with engines such
as Wolfram Alpha1, which can give quite precise answers: when
asking, e.g., for the distance from Darmstadt to Aberdeen, the user

1http://www.wolframalpha.com/
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is presented the exact distance in different units of measurement,
plus additional information such as how long an aircraft would take
to travel the distance. On the other hand, Wolfram Alpha often
fails on comparatively simple questions, such as asking for the most
famous work by William Shakespeare.

Today, looking up data on the semantic web will lead to a set of
more or less correct, but probably not complete results. For exam-
ple, querying DBpedia for instances of the YAGO category Uni-
versityTownsInGermany yields seven results2. However, there are
more than 40 of such towns in Germany. Since Linked Open Data
follows the open world assumption, the answer retrieved is not in-
correct. However, it is also only of limited use in query answering
systems.

There are other datasets in Linked Open Data that motivate cer-
tain applications. For example, the DrugBank dataset3 contains
information about different medical drugs and their interactions.
One could envision an application where a user can enter the drugs
he or she is taking and ask for potentially harmful interactions.
Again, in that case, recall is at least equally essential than preci-
sion: not reporting a potential interaction might lead to wrong self-
medication, while reporting faulty interactions would, in the best
case, just make the user check back with his or her doctor.

A scenario which demonstrates the trade-off of precision and recall
even more drastically is the domain of emergency management.
Recently, prototypes have been discussed that leverage Linked Open
Data for supporting emergency response staff. One example is
MICI, which uses information from Linked Geo Data to inform
decision makers about potentially affected infrastructure. For ex-
ample, if a fire is reported, schools and kindergartens nearby can
be identified in order to prepare evacuation activities [16].

In that scenario, a high recall is even more important than a high
precision. Missing to evacuate one school has more drastic effects
than discarding one result that is not a school. Given that the type
information flagging an object as a school is not complete, impre-
cise axioms such as ∃placeOf.Course v School may help in-
creasing the recall, even though they may slightly reduce precision
(e.g., private teachers giving courses at home may also be covered).
This shows that even in unexpected scenarios (intuitively, emer-
gency management requires precise knowledge), imprecise knowl-
edge can be an asset.

These scenarios show that some applications built on Linked Open
Data require a good recall, while a precision of 100% is often not
that essential. Thus, allowing for imprecise information which in-
creases recall, for the price of sacrificing a few percent of precision,
seems to be desirable.

3. TOWARDS AN IMPRECISE SEMANTIC
WEB

Leveraging imprecise knowledge on the Semantic Web requires ef-
forts in different areas. First, imprecise knowledge has to be cre-
ated. This may be done by humans coding some of their rules of
thumb and implicit knowledge, but in order to foster a quick adop-
tion, automatic approaches are highly favorable. Such approaches
could, e.g., use frequent pattern mining on existing data (cf. sec-

2As of July 17th, 2012
3http://www4.wiwiss.fu-berlin.de/drugbank/
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tion 4), or employ knowledge extraction from external sources,
such as texts on the web.

Second, there need to be means to represent uncertain knowledge
and uncertainty degrees on the level of individual axioms, both on
the T-box and the A-box level. A possible option would be the
adoption and extension of the Semantic Web Provenance vocabu-
lary4.

Third, imprecise knowledge needs to be processed in a useful man-
ner. It is clearly not enough to present the user a set of possible
statements with their degrees of precision. A possible implementa-
tion could provide SPARQL endpoints which allow for specifying a
desired degree of precision, as shown in figure 1. Such an endpoint
could be used to build applications satisfying different information
needs, characterized by different trade-offs of precision and recall.
A special reasoner capable of dealing with uncertain knowledge
can both deliver the queried information at the demanded level of
precision, as well as adjust the certainty degrees of the uncertain
knowledge axioms.

Furthermore, using uncertain knowledge to derive new facts will
be essential. Just as reasoning was proclaimed to be one of the key
capabilities of the Semantic Web, new breeds of reasoners have to
be able to cope with imprecise information (cf. section 6). This is
particularly useful when combining different uncertain statements.
Using our introductory example, the imprecise implications Lion v
DangerousAnimal and BigAnimal v DangerousAnimal
could be used to decide whether an actual instance of a lion is a
dangerous animal.

A crucial point in creating and processing imprecise knowledge
is the assignment of useful degrees of uncertainty. If uncertainty
degrees are chosen badly, the entire approach can be flawed. One
counter example are the degrees of similarity used in ontology match-
ing [3], in particular those derived by syntactic matching algo-
rithms. For example, the words House and Mouse may be similar,
but stating House ≡Mouse with a precision of 0.8 would not be
a useful piece of imprecise information, since most of the conclu-
sions drawn from that axiom would be useless. Thus, meaningful
numerical truth values for imprecise axioms are required.

4. CREATING IMPRECISE KNOWLEDGE
To minimize the ramp-up efforts, discovering good uncertain ax-
ioms is a desirable goal for the future uncertain Semantic Web.
While various approaches for the automatic acquisition of uncertain
knowledge are possible, a natural way is to use inductive learning,
as it close to the way humans acquire their (imprecise) knowledge

4Cf. http://www.w3.org/2011/prov/wiki/
ProvenanceRDFNamedGraph
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of the world: we observe the world and derive generalized rules
from those observations. To pursue this approach, we have con-
ducted a first experiment with mining uncertain rules from DBpe-
dia.

The starting point of our considerations was a method for ontology
learning on Linked Open Data. The underlying rationale was that
linked open data has a lot of instance data, but only little schema
information that can be exploited by reasoning in intelligent ap-
plications. Furthermore, the instance data is largely incomplete.
One example is the mapping of DBpedia to YAGO. As shown in
the above example about German university towns, this mapping
is largely incomplete. Thus, it would be desirable to have rules
which allow for the deduction of those missing mappings. For ex-
ample, the axiom GermanCity u ∃locationOf.University v
GermanUniversityTown could help completing this particular
type of mapping.

As discussed in [20], a possible way of learning such rules on
Linked Open Data is the use of association rule mining. Since as-
sociation rule mining is a heuristic approach, it produces heuris-
tic, yet inherently imprecise rules. Thus, we have pursued that
approach to discover imprecise knowledge, using our framework
FeGeLOD, which makes Linked Open Data accessible to machine
learning tools [14].

For a preliminary study, we have used a dataset consisting of eight
subsets of DBpedia, covering different domains and containing 1,000
randomly sampled instances each. The goal was to infer additional
rules that help establishing additional links to the YAGO classifica-
tion.

We have constructed three types of features on the dataset: direct
type features (e.g., Novel) , unqualified relations (e.g., ∃author.>),
and qualified relations (e.g., ∃author.AmericanWriter). Using
those features, we have mined association rules using four differ-
ent levels of minimum confidence (1.0, 0.75, 0.5, and 0.25). As
the number of mined rules is potentially large, we sampled a ran-
dom subset of 250 rules from each dataset and level, and rated those
rules manually, using three different rating values: correct, impre-
cise, and wrong.

Figure 2 depicts the evaluation of the mined rules. It can be ob-
served that on some datasets (animals, books, movies), a consider-
able amount of useful, imprecise axioms can be learned. Examples
include:

BirdsOfSuriname v BirdsOfV enezuela, (1)
BritishNovels v ∃author.EnglishNovelists (2)

TamilLanguageF ilms v ∃starring.TamilActors (3)

Each of those axioms is correct to a certain extent, yet not 100%
precise. Many birds living in Venezuela will also be observable
in the neighboring Suriname, books written by English novelists
are likely to be British novels (although they may occasionally be
short story collections), and films starring Tamil actors are likely to
be films in Tamil language, despite some Hollywood productions
starring Tamil actors.

To further analyze the use of those imprecise rules, we have cal-
culated the productivity of those axioms, defined as the number of
additional axioms that may be derived by the rule. We define the

productivity of an axiom A v B as the number of statements that
fulfil the body, but not the head:

prodAvB := #(B u ¬A) (4)

For a better comparison, we define the relative productivity as

rprodAvB := 1 +
#(B u ¬A)

#A
(5)

The relative productivity of an axiom describes the factor by which
the recall of a query for instances of A could be increased when
using all consequences induced by that axiom. For the above ex-
amples 1–3, the relative productivity is 1.91, 2.17, and 2.25. Thus,
the recall about doubles in all three cases. This shows that the ap-
proach is feasible to produce rules of useful, imprecise knowledge.

5. REPRESENTING IMPRECISE KNOWL-
EDGE

Once imprecise information is discovered and created with appro-
priate measures of imprecision, it needs to be stored in order to
allow for further processing. So far, there has not been a standard
for representing uncertainty information in RDF and OWL. W3C
set up an incubator group URW3-XG on uncertainty reasoning for
the World Wide Web5; however, according to its final report6, there
seems to be some debate about what should be standardised by
W3C. No working group, accordingly, was set up based on the
work in the incubator group.

As imprecision can occur both on the instance and the schema level,
mechanisms of an imprecise Semantic Web should be able to cope
with both, ideally in a uniform way. Technically, to represent un-
certainty, one could either aim at using existing language features
in the Semantic Web, or to create new language extensions [2].
While numerous new extensions have been proposed8, we believe
that only downward compatible approaches using existing language
features, at least to a certain extent, have the potential to become a
building block of an imprecise semantic web.

Since RDF allows reification, i.e., statements about statements, a
possible way would be to add reified statements representing un-
certainty. Although reification is not well supported by many tools,
and the use of reification for Linked Open Data is often explic-
itly discouraged9, the advantage of this approach is that no new
standards are required, except for a small vocabulary for represent-
ing the statements about imprecision, and that it is fully downward
compatible with existing RDF and Linked Open Data.

As discussed above, there have been some efforts in the Provenance
community to establish provenance information for named graphs.
This would allow for flexible mechanisms for assigning impreci-
sion measures10. An RDF graph would have to be broken down
into several subgraphs, which could then be flagged with the appro-
priate measures. The same could be done for schemas. While this
could lead to a larger number of named graphs and subgraphs, it
would naturally fit with today’s standardization efforts of the W3C.
5http://www.w3.org/2005/Incubator/urw3/
67

8See http://www.w3.org/2005/Incubator/urw3/
XGR-urw3-20080331/#appendixC for a comprehensive list
9cf. http://www4.wiwiss.fu-berlin.de/bizer/
pub/LinkedDataTutorial/

10Cf. http://www.w3.org/2011/prov/wiki/
ProvenanceRDFNamedGraph
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Figure 2: Evaluation of the mined rules on different subsets of DBpedia. For the books dataset, no rules with a minimum confidence
of 1.0 were found.

Furthermore, it would be possible not only to add numerical values
for imprecision, but also explanations on how the imprecise infor-
mation was created (e.g., manually, by inductive learning, by crowd
sourcing, etc.), which are a genuine part of provenance data.

6. PROCESSING IMPRECISE KNOWLEDGE
The Semantic Web needs to be able to deal with imprecise data
and knowledge. Our envisioned imprecise semantic web can ex-
ploit existing uncertainty extensions of semantic web languages.
In what follows, we first briefly summarize key approaches and
then discuss their limitations, in terms of supporting the imprecise
semantic web.

Handling imprecise data and knowledge in the semantic web is not
a new topic. There is a series of international workshop on un-
certainty reasoning for the semantic web.11 The most well known
approaches include fuzzy extensions [18, 19], probabilistic exten-
sions [6, 11, 8] and possibilistic extensions [15]. Fuzzy extensions
can be used to deal with vague concepts, such as ‘Tall’ and ‘Dan-
gerous’. The main difference between possibilistic extension and
probabilistic extension lies in the fact that possibilistic logic is a
qualitative representation of likelihood, whilst probabilistic exten-
sion is on quantitative aspects of likelihood. The W3C Uncertainty
Reasoning for the World Wide Web Incubator Group (URW3-XG)
published a report (see above) on existing solutions and method-
ologies of uncertainty extensions.

Reasoning on imprecise knowledge is useful for deriving new ax-
ioms based on known facts and imprecise axioms. For example,
consider the two axioms:

BritishNovels v ∃author.EnglishNovelists

BritishNovels v EnglishBook

u∃translation.GermanTranslation

As discussed above, both of the axioms are imprecise. English
novelists may occasionally publish works other than novels, and
not every English book which has a translation to German is an En-
glish novel (although novels are more likely to be translated than
other types of books). Given an English book b0 which is both writ-
ten by an English novelist and a German translation, an imprecise

11http://http://c4i.gmu.edu/ursw/

reasoner could calculate a high confidence score for the statement
BritishNovels(b0) by combining both pieces of evidence.

This example shows how several pieces of imprecise knowledge
can lead to new axioms which could not be derived using the tradi-
tional Semantic Web. However, there are some limitations of exist-
ing work on uncertainty extensions of semantic web languages:

• As discussed above, one first necessary step is an agreed
standard representation of uncertain knowledge.

• Most uncertainty extensions of ontology languages suffer from
high computational complexity; therefore, they might be ill-
suited to provide real time reasoning services for semantic
web applications. Having said that, there are some convinc-
ing work on scalable reasoning and/or query answering for
the fuzzy extensions of tractable ontology languages, includ-
ing fuzzy OWL 2 QL [12], fuzzy OWL 2 EL [17] and fuzzy
OWL pD* [10]. More practical solutions should be provided
on other extensions, such as probabilistic extensions. Given
that RDF, as a sub-language of OWL 2 QL and OWL 2 RL,
has been shown to be a good starting point [9, 21], it might
be feasible to come up with some good solutions for tractable
OWL profiles.

• Existing approaches deal with individual forms of uncertainty
separately; however, they do not aggregate of different forms
of uncertainty.

Solutions of the above limitations should be provided for the im-
precise semantic web.

7. CONCLUSIONS
In this paper, we have discussed the use of imprecise knowledge
on the Semantic Web. We have discussed an introductory exam-
ples showing that even in an unexpected domain such as emergency
management, imprecise knowledge can add benefit to existing ap-
plications exploiting the Semantic Web. Furthermore, we have dis-
cussed a vision of a Semantic Web using both inductive and (im-
precise) deductive techniques for serving information on different
levels of confidence. Such a combination is useful for address-
ing individual applications’ information needs defined by different
trade-offs between recall and precision.

http://http://c4i.gmu.edu/ursw/


Furthermore, we have shown given a glance at existing works in
the area, showing an initial experiment for creating imprecise rules
on DBpedia, and presented a short overview on approaches and
initiatives that try to represent and process imprecise knowledge on
the Semantic Web.

There are several crucial issues that have to be addressed to make
the imprecise Semantic Web become useful. First of all, scalability
is an important issue, both for discovering as well as for process-
ing imprecise knowledge. When using inductive learning for dis-
covering imprecise knowledge, lazy learning techniques [1] are a
promising approach for addressing the scalability issue, since they
do not require processing a whole dataset such as DBpedia in ad-
vance, but allow for deriving knowledge on demand for particular
interesting instances. For processing imprecise knowledge, new
breeds of reasoners dealing with imprecise knowledge are required
to make that sort of knowledge usable for real-world use cases.

Assigning useful degrees of imprecision is a crucial point in creat-
ing and using imprecise knowledge. The confidence degrees deliv-
ered by a machine learning algorithm can be a candidate, but are not
necessarily the best measure. Since human often rate the value of
an imprecise rule differently from machines [13], augmenting our
approach with humans in the loop, e.g., by using crowd-sourcing or
games with a purpose, could help in creating more useful imprecise
knowledge.

In this paper, we have introduced a number of examples for impre-
cise rules. These are rules that have a certain degree of impreci-
sion, i.e., they are correct in a certain fraction of cases. However,
other cases of imprecision could be useful. An example would be a
rule such as A movie with mostly American actors is an American
Movie, where the word mostly hints at a different type of impreci-
sion.

For the future, we envision the creation of a model of imprecision
that encompasses those different types of imprecision, and a stack
of languages and tools that support a new imprecise Semantic Web
based on those considerations. We are confident that such an im-
precise Semantic Web could add much value to many knowledge-
intense applications.
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