
Improving UI Integration with Formal Semantics

Heiko Paulheim and Florian Probst
SAP Research CEC Darmstadt

Bleichstrasse 8
64283 Darmstadt, Germany

{heiko.paulheim,f.probst}@sap.com

ABSTRACT
There are different strategies to integrate software sys-
tems: integration on the data layer, on the business
logic layer, and on the user interface layer. The latter
area, recently gaining attention by the rising popularity
of Web 2.0 mashups, can benefit heavily from formal
models and ontologies. In this paper, we argue why
integration on the user interface level requires formal
semantics. We present a framework using ontologies
for user interface integration and discuss the relevant
research tasks and links to related research fields.

ACM Classification Keywords
D.2.2 Software Engineering: Design Tools and Tech-
niques—User Interfaces; D.2.13 Reusable Software: Re-
use models

General Terms
Design, Algorithms

Author Keywords
Ontologies, User Interfaces, Integration

INTRODUCTION
Software applications are typically built in three layers:
the data layer, the business logic layer, and the user
interface layer. Therefore, three integration approaches
can be identified: integrating on the data layer (and de-
veloping a common business logic and UI), integrating
on the business logic layer (and developing a common
UI), and integrating on the UI layer [6] (see Fig. 1).
The latter has two important advantages: From an en-
gineering point of view, existing UIs can be reused, thus
increasing the overall degree of reuse, and modulariza-
tion is facilitated [18]. From a usability point of view,
users do not have to learn new UIs [17].

Integration on the user interface layer results in an in-
tegrated system, consisting of individual applications,
whose UI as well as business logic and data layer (or
a subset thereof) are preserved. The different applica-
tions behave as they would in a non-integrated system.
In addition, cross-application interactions are possible,
such as highlighting related information in different ap-
plications, or dragging and dropping objects from one
application to another. Therefore, the integrated sys-
tem is more than the sum of its parts. Common UI
integration approaches, such as portals and mash-ups,

Figure 1. Three different approaches for integrating soft-
ware systems [17]

have drawbacks and limitations when it comes to devel-
oping such interactions: they require manual coding in
languages such as JavaScript which in most cases cre-
ates dependencies between the individual applications,
thus contradicting the idea of a modular system and
complicating system maintenance (e.g. by exchanging
components) [6].

WHY FORMAL SEMANTICS ARE NEEDED
In integrated systems, applications need to react to
events that take place in other applications. UI inte-
gration approaches are thus most commonly developed
based on event exchange mechanisms, where different
variants exist, such as centrally-mediated or component-
to-component communication [6]. Without a sophisti-
cated event processing approach, those mechanisms cre-
ate dependencies between the integrated user interface
components: applications rely on events of a certain
type to happen, and specialized code is written to react
to that sort of event. Thus, when one of the integrated
application is exchanged for another one, the reacting
application needs to be adapted as well (see Fig. 2(a)).
Therefore, the principle of modularity is violated.

Furthermore, an event message which is sent from one
application to another has to be understood by the re-
ceiving application, and this understanding has to be
mutual for the sender and the receiver. This raises
the question: “How do we capture the meaning of an
event?” A common model for the contents of the event



(a) Point-to-point event processing without annotations

(b) Centrally mediated event processing with annotations

Figure 2. Different variants of implementing event based
processing in integrated user interfaces. Without anno-
tations, the event processing code has to be altered ev-
ery time one application is exchanged for another one.
Annotations and rules can be used to implement an inte-
grated user interface in a modular way such that applica-
tions can be exchanged without causing further changes.

as well as its metadata, such as time and place, is re-
quired [21] to semantically annotate the events. In the
semantic web community, ontologies are a well-researched
mechanism which can be used to annotate e.g. data
sources and web services [5, 10].

Ontologies defining the possible types of events, the ob-
jects that may be contained therein, and the compo-
nents which can send and receive those events, can pro-
vide a formal model for information exchange between
integrated applications. Events as well as applications
and their components can then be annotated by using
those ontologies, thus providing a mutual understand-
ing of the applications to be integrated and the messages
they send to each other. Event processing rules evaluat-
ing those annotations can be used to build more mod-
ular integrated user interfaces, since they dispose the
need for adjusting event processing code upon changes
in other integrated parts (see Fig. 2(b)).

Therefore, we propose using ontologies to create formal
descriptions of UIs, which can be used in UI integra-
tion to provide the basis for a mutual understanding
of exchanged messages and pave the way to modular
integrated user interfaces [17, 18].

AN ONTOLOGY OF THE DOMAIN OF USER INTERFACES
AND INTERACTIONS
For describing and understanding an event, information
such as the following are necessary:

• What sort of action caused the event?

• Which information objects are involved in the action?

• Which component was the action performed with?

• Who performed the action?

Some additional information might become necessary
when formulating rules for event processing as shown
in Fig. 2(b):

• Is a reacting component (i.e. a receiver for the trig-
gered event) available?

• In which state is that component (e.g. activated)?

• Do any domain specific constraints hold on the ob-
jects involved in an action?

These questions can be used to derive the necessary
core concepts of the required ontology or ontologies [9].
In our approach, we have chosen to use three types of
ontologies (see Fig. 3) [18]:

• An ontology of the domain of user interfaces and in-
teractions defines basic concepts such as interactive
components, actions, and information objects (see be-
low).

• An ontology of the integrated application’s real world
domain (such as banking, travel, etc.) defines the
real world concepts represented by the information
objects the application deals with.



Figure 3. Two domain ontologies and several application
ontologies are used for integration on the user interface
level [17].

• Based on these domain-level ontologies, one applica-
tion-level ontology per integrated application is de-
veloped, defining the UI components and interactions
of this UI by extending the base concepts from the
user interfaces and interactions ontology, as well as
the information objects that this UI uses.

While the UI and interactions domain ontology is part
of the framework, the real world domain ontology is not,
and there are no links between them. Therefore, our
framework can be used to develop integrated systems
for different real world domains by using an (existing
or custom-built) real world domain ontology. All ap-
plication ontologies use the two domain-level ontologies
to describe the individual applications and their capa-
bilities. Thus, the domain level provides the common
ground and background knowledge upon which the ap-
plication ontologies are defined [10].

The application ontologies also contain integration rules,
which are used to facilitate an intelligent event pro-
cessing mechanism, as described above. Following the
Event-Condition-Action (ECA) pattern [1], those rules
use concepts from the different ontologies to define the
events triggering an interaction, the conditions under
which those interactions are possible, and the actions
(i.e. new events) to be triggered within an interaction.

Fig. 4 shows an excerpt of the ontology of the user inter-
faces and interactions domain. Each integrated applica-
tion consists of several (potentially nested) interactive
components and supports certain interactions. Each in-
teraction has a trigger and an effect, each of which can
be either a user action or a system action (at the mo-
ment, we do not further distinguish the individual users
or system components who have actually performed the
action), which are further classified (not shown in the
figure) into different user actions (such as drag, drop,
select, etc.) and system actions (such as highlight, hide,
delete, etc.). Each action can involve one or more infor-
mation objects, which represent things in the real world.
It is important to notice that this modeling approach
distinguishes things in the real world and information

Figure 4. The core concepts of the ontology of the user
interfaces and interactions domain. The dark grey ellipse
marked “Domain Object” indicates a placeholder which
can be filled by concepts from a real world domain on-
tology.

objects in the system (the first being represented by the
latter), which is necessary for accurately describing the
system functionality, but often neglected [3, 13].

PROTOTYPE FRAMEWORK
We have developed a prototype of an integration frame-
work for showing the feasibility of UI integration based
on ontologies, based on Java and the OntoBroker [16]
reasoner. Fig. 5 shows the basic architecture of our inte-
gration framework. The application ontologies of each
integrated application – which can be implemented in
Java as well as in other technologies, such as Adobe
Flex – are evaluated at run-time: When an event oc-
curs, such as a select action performed by a user, an
event annotated with the respective concepts in the on-
tologies is sent to the ontology processing unit. It reads
the event, uses the reasoner to compute the reactions
that have to be performed by other applications, and
notifies them with new events (such as a command for
highlighting information objects related to the one se-
lected by the user).

On the implementation level, every application may use
its own class model for handling data, and the original
information objects involved in an action are sent along
with the corresponding event. Those information ob-
jects have to be annotated with elements from the real
world domain ontology, so the reasoner and other appli-
cations can analyze and process those objects correctly.
Annotations of information object classes and their at-
tributes are stored in a repository.



Figure 5. Framework architecture [17]

RESEARCH TASKS
From our previous work in user interface integration,
we have identified three central research tasks which
are relevant for the research community concerned with
semantic and model-driven user interfaces.

First and foremost, a framework for semantic mod-
els of user interfaces which is versatile enough to
cover the vast variety of user interfaces, from WIMP
to tangible UIs, is needed. Such a framework is also
necessary for model-driven UI development: In both
cases, an adequate modeling depth and level of detail
have to be determined, and both areas would benefit
from standardized semantic models for user interfaces.
Reverse engineering mechanisms turning existing user
interfaces into models would also be desirable (yet prob-
ably utopian for the near future, at least in a generic
fashion).

Second, we employ reasoning on user interfaces at run-
time. There are other approaches where run-time rea-
soning can be employed, such as UI personalization and
adaptation, or implementing context-sensitive interac-
tions. In UI programming, the reactivity of the result-
ing UI is a paramount criterion, which poses significant
performance and scalability challenges to the use
of ontology reasoners. First experiments with differ-
ent performance optimization strategies show that our
framework can guarantee an acceptable performance
way below the “magical” two seconds [15, 20].

Third, semantic models may also be employed to pro-
vide intelligent user assistance. We have shown the ex-
ample of highlighting relevant drop locations and aug-
menting them with tooltips [18]: whenever a user drags
an object, the corresponding drop locations are high-
lighted, and tooltips indicate what would happen if the
user dropped the object there. The same integration
rules as discussed above are evaluated for generating
the user assistance. Here, research tasks such as intu-
itive visualizations and/or verbalizations of on-
tologies and rules have to be addressed.

RELATED WORK
The need for formal models for user interface integra-
tion has been pointed out in [22], where the authors
name four requirements for those formal models: they
are supposed to be simple, formal, human readable, and
modular. While simplicity lies in the eye of the be-
holder, ontologies meet at least the other three criteria.

A universal approach using ontologies for user interface
integration has not yet been presented. There have been
examples for employing ontologies in portal and mashup
development [2], which help showing related data in dif-
ferent applications at the same time. Another approach
shows how data links can be established for automatic
form-filling [7]. Unlike in the approach presented in this
paper, these examples are restricted to data visualiza-
tion and form-filling, i.e. no further cross-application
interactions are possible.

There are several fields related to user interface inte-
gration in which ontologies are successfully employed.
Ontologies may be used to capture and track the re-
quirements in user interface engineering [8], and as in-
put models to code generators for automatic generation
of user interface code [14]. Futhermore, they may be
used to develop repositories for annotated components
and patterns to assist the UI developer [11, 12].

SUMMARY
The integration of user interfaces by using ontologies
is an important and promising area of application for
formal models in user interfaces. Like for other ar-
eas, two main ingredients are needed: precise formal
models, and high-performance implementations of se-
mantic processing mechanisms that scale up to larger
integrated UIs. As integration requires an unambigu-
ous and mutually understood information exchange be-
tween the integrated applications, semantic annotation
of the exchanged information is essential.

The UI integration framework described in this paper
has been successfully used for building the integrated
emergency management platform SoKNOS, where twelve
applications addressing different tasks in emergency re-
sponse have been integrated on the user interface level
[19]. In the SoKNOS project, an ontology for the real
world domain of emergency response has been devel-
oped, which is used for the application ontologies and
their integration rules [4].

Acknowledgements
The work presented in this paper has been partly funded
by the German Federal Ministry of Education and Re-
search under grant no. 01ISO7009.

REFERENCES
1. D. Anicic and N. Stojanovic. Towards Creation of

Logical Framework for Event-Driven Information
Systems. In J. Cordeiro and J. Filipe, editors,
ICEIS 2008 - Proceedings of the Tenth
International Conference on Enterprise



Information Systems, Volume ISAS-2, Barcelona,
Spain, June 12-16, 2008, pages 394–401, 2008.

2. A. Ankolekar, M. Krötzsch, T. Tran, and
D. Vrandecic. The Two Cultures: Mashing Up
Web 2.0 and the Semantic Web. In WWW ’07:
Proceedings of the 16th International Conference
on World Wide Web, pages 825–834, New York,
NY, USA, 2007. ACM.

3. N. Arora, R. Westenthaler, W. Behrendt, and
A. Gangemi. Information Object Design Pattern
for Modeling Domain Specific Knowledge. In 1st
ECOOP Workshop on Domain-Specific Program
Development, 2006.

4. G. Babitski, F. Probst, J. Hoffmann, and
D. Oberle. Ontology Design for Information
Integration in Catastrophy Management. In
Proceedings of the 4th International Workshop on
Applications of Semantic Technologies (AST’09),
2009.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The
Semantic Web. Scientific American, 284(5):34–43,
2001.

6. F. Daniel, J. Yu, B. Benatallah, F. Casati,
M. Matera, and R. Saint-Paul. Understanding UI
Integration: A Survey of Problems, Technologies,
and Opportunities. IEEE Internet Computing,
11(3):59–66, 2007.

7. O. Dı́az, J. Iturrioz, and A. Irastorza. Improving
portlet interoperability through deep annotation.
In WWW ’05: Proceedings of the 14th
international conference on World Wide Web,
pages 372–381, New York, NY, USA, 2005. ACM.

8. E. Furtado, J. J. V. Furtado, W. B. Silva,
D. W. T. Rodrigues, L. da Silva Taddeo,
Q. Limbourg, and J. Vanderdonckt. An
Ontology-Based Method for Universal Design of
User Interfaces. In Task Models and Diagrams For
User Interface Design (TAMODIA 2002), 2002.

9. M. Grüninger and M. S. Fox. Methodology for the
Design and Evaluation of Ontologies. In IJCAI’95,
Workshop on Basic Ontological Issues in
Knowledge Sharing, April 13, 1995, 1995.

10. N. Guarino, editor. Formal Ontology and
Information Systems. IOS Press, 1998.

11. H.-J. Happel, A. Korthaus, S. Seedorf, and
P. Tomczyk. KOntoR: An Ontology-enabled
Approach to Software Reuse. In K. Zhang,
G. Spanoudakis, and G. Visaggio, editors,
Proceedings of the Eighteenth International
Conference on Software Engineering & Knowledge
Engineering (SEKE), pages 349–354, 2006.

12. S. Henninger, M. Keshk, and R. Kinworthy.
Capturing and Disseminating Usability Patterns

with Semantic Web Technology. In CHI 2003
Workshop: Concepts and Perspectives on HCI
Patterns, 2003.

13. E. Klien and F. Probst. Requirements for
Geospatial Ontology Engineering. In F. Toppen
and M. Painho, editors, 8th Conference on
Geographic Information Science (AGILE 2005),
pages 251–260, Estoril, Portugal, 2005.

14. B. Liu, H. Chen, and W. He. Deriving User
Interface from Ontologies: A Model-Based
Approach. In ICTAI ’05: Proceedings of the 17th
IEEE International Conference on Tools with
Artificial Intelligence, pages 254–259, Washington,
DC, USA, 2005. IEEE Computer Society.

15. R. B. Miller. Response time in man-computer
conversational transactions. In AFIPS ’68 (Fall,
part I): Proceedings of the December 9-11, 1968,
fall joint computer conference, part I, pages
267–277, New York, NY, USA, 1968. ACM.

16. ontoPrise. OntoBroker Website.
http://www.ontoprise.de/de/en/home/
products/ontobroker.html, 2009.

17. H. Paulheim. Ontologies for User Interface
Integration. In A. Bernstein, D. R. Karger,
T. Heath, L. Feigenbaum, D. Maynard, E. Motta,
and K. Thirunarayan, editors, The Semantic Web
- ISWC 2009, volume 5823 of Lecture Notes in
Computer Science, pages 973–981. Springer, 2009.

18. H. Paulheim. Ontology-based Modularization of
User Interfaces. In G. Calvary, T. C. N. Graham,
and P. Gray, editors, Proceedings of The 1st ACM
SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS’2009), pages 23–28.
ACM, 2009.

19. H. Paulheim, S. Döweling, K. Tso-Sutter,
F. Probst, and T. Ziegert. Improving Usability of
Integrated Emergency Response Systems: The
SoKNOS Approach. In Proceedings ”39.
Jahrestagung der Gesellschaft für Informatik e.V.
(GI) - Informatik 2009”, volume 154 of LNI, pages
1435–1449, 2009.

20. B. Shneiderman. Response Time and Display Rate
in Human Performance with Computers. ACM
Computing Surveys, 16(3):265–285, 1984.

21. U. Westermann and R. Jain. Toward a Common
Event Model for Multimedia Applications. IEEE
MultiMedia, 14(1):19–29, 2007.

22. J. Yu, B. Benatallah, R. Saint-Paul, F. Casati,
F. Daniel, and M. Matera. A framework for rapid
integration of presentation components. In WWW
’07: Proceedings of the 16th international
conference on World Wide Web, pages 923–932,
New York, NY, USA, 2007. ACM.


