
Machine Learning with and for
Semantic Web Knowledge Graphs

Heiko Paulheim

Data and Web Science Group, University of Mannheim, Germany
heiko@informatik.uni-mannheim.de

Abstract. Large-scale cross-domain knowledge graphs, such as DBpe-
dia or Wikidata, are some of the most popular and widely used datasets
of the Semantic Web. In this paper, we introduce some of the most pop-
ular knowledge graphs on the Semantic Web. We discuss how machine
learning is used to improve those knowledge graphs, and how they can be
exploited as background knowledge in popular machine learning tasks,
such as recommender systems.

Keywords: Knowledge Graphs, Semantic Web, Machine Learning, Back-
ground Knowledge

1 Introduction

The term “Knowledge Graph” was coined by Google when they introduced their
knowledge graph as a backbone of a new Web search strategy in 2012, i.e., moving
from pure text processing to a more symbolic representation of knowledge, using
the slogan “things, not strings”1.

A similar idea, albeit already introduced in the mid-2000s, underlies the
concept of Linked Data: in order to organize knowledge, URIs (instead of textual
names) are used to identify and distinguish entities [1]. Hence, many datasets of
the Linked Open Data cloud [73] could also be considered knowledge graphs.

There is no formal definition of a knowledge graph [12]. In the course of this
work, we follow the characteristics sketched in [47], saying that a knowledge
graph

1. mainly describes real world entities and their interrelations, organized in a
graph.

2. defines classes and properties of entities in a schema.
3. allows for potentially interrelating arbitrary entities with each other.
4. covers various topical domains.

We call a dataset following those characteristics and published using Semantic
Web standards a Semantic Web Knowledge Graph. As Semantic Web standards,
we understand

1 https://googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.

html

Nine Inch Nails Trent Reznor
singer

Fig. 1: Example RDF Statement

– the use of derefencable URIs [1] for referring to entities, i.e., URIs that point
to resources on the Web

– the use of RDF2 for representing the graph, and
– the use of RDF schema3 and/or OWL4 for representing the schema of the

graph

RDF organizes knowledge in statements, connecting either two entities in a
knowledge graph by an edge, or an entity with a literal (i.e., elementary) value
(such as a number or a date). Fig. 1 shows an example of such an RDF state-
ment. It can also be written down as a triple consisting of a subject, a predicate,
and an object, where the subject and the object are the entities, whereas the
predicate is the property or edge label:

:Nine Inch Nails :singer :Trent Reznor .

Hence, an RDF knowledge graph can either be conceived as a directed, labeled
graph, or as a set of such triples.

As an alternative to the triple notation, such statements can be expressed in
terms of binary predicates, e.g.,

singer(Nine Inch Nails, Trent Reznor)

In the course of this paper, we will use the following terms to refer to concepts
related to knowledge graphs:

entities or instances are the nodes in a graph. Typically, they refer to an
entity in the real world, such as a person, a city, etc.

literals are elementary data values, such as numbers or dates. They can be
used, e.g., for expressing the birth date of a person or the population of a
city.

relations are the edges in a graph. They link two entities or an entity and a
literal.

Those concepts are typically used in the A-box, i.e., the assertional part of the
knowledge graph. This is typically the larger part of a knowledge graph. It is
complemented by the schema, or T-box, which defines the types of entities and
relations that can be used in a knowledge graph. Those encompass:

classes or types are the categories of entities that exist in a knowledge graph,
e.g., Person, City, etc. They can form a hierarchy, e.g., City being a subclass
of Place.

2 https://www.w3.org/RDF/
3 https://www.w3.org/TR/rdf-schema/
4 https://www.w3.org/TR/owl-overview/

properties are the categories of relations that exist in a knowledge graph, e.g.,
birth date, birth place, etc.

While the set of classes is defined in the T-box, the assertion that an individual
class is made as a triple in the A-box, e.g.:

:Nine Inch Nails a :Band .

or using a unary predicate:

Band(Nine Inch Nails)

All assertions made in the A-box – relating two entities, relating an entity and
a literal, and assigning a type to an entity, are called facts.

Often, the schema also defines further constraints, e.g., certain classes may
be disjoint, and properties may have a domain (i.e., all subjects of the relation
have a certain type) and a range (i.e., all objects of the relation have a certain
type). For example, the relation birth Place may have the domain Person and
the range City. Moreover, properties may be defined with other characteristics,
such as symmetry, transitivity, etc.

2 Semantic Web Knowledge Graphs

Various public knowledge graphs are available on the Web, including DBpedia
[30] and YAGO [33], both of which are created by extracting information from
Wikipedia (the latter exploiting WordNet on top), the community edited Wiki-
data [79], which imports other datasets, e.g., from national libraries5, as well as
from the discontinued Freebase [58], the expert curated OpenCyc [32], and NELL
[5], which exploits pattern-based knowledge extraction from a large Web corpus.
Lately, new knowledge graphs have been introduced, including DBkWik, which
transfers the DBpedia approach to a multitude of Wikis [26], and WebIsALOD,
which extracts a knowledge graph of hypernymy relations from the Web [24, 74]
using Hearst patterns [20] on a large-scale Web corpus.

2.1 Cyc and OpenCyc

The Cyc knowledge graph is one of the oldest knowledge graphs, dating back to
the 1980s [32]. Rooted in traditional artificial intelligence research, it is a curated
knowledge graph, developed and maintained by CyCorp Inc.6 OpenCyc was a
reduced version of Cyc, which used to be publicly available, including a Linked
Open Data endpoint with links to DBpedia and other LOD datasets. Despite its
wide adoption, OpenCyc was shut down in 2017.7.

OpenCyc contained roughly 120,000 entities and 2.5 million facts; its schema
comprised a class hierarchy of roughly 45,000 classes, and 19,000 properties.8

5 https://www.wikidata.org/wiki/Wikidata:Data_donation
6 http://www.cyc.com/
7 http://www.cyc.com/opencyc/
8 These numbers have been gathered by own inspections of the 2012 of version of

OpenCyc.

2.2 Freebase

Curating a universal knowledge graph is an endeavour which is infeasible for most
individuals and organizations. To date, more than 900 person years have been
invested in the creation of Cyc [72], with gaps still existing. Thus, distributing
that effort on as many shoulders as possible through crowdsourcing is a way taken
by Freebase, a public, editable knowledge graph with schema templates for most
kinds of possible entities (i.e., persons, cities, movies, etc.). After MetaWeb, the
company running Freebase, was acquired by Google, Freebase was shut down on
March 31st, 2015.

The last version of Freebase contains roughly 50 million entities and 3 billion
facts9. Freebase’s schema comprises roughly 27,000 classes and 38,000 relation
properties.10

2.3 Wikidata

Like Freebase, Wikidata is a collaboratively edited knowledge graph, operated
by the Wikimedia foundation11 that also hosts the various language editions of
Wikipedia. After the shutdown of Freebase, the data contained in Freebase is
subsequently moved to Wikidata.12 A particularity of Wikidata is that for each
axiom, provenance metadata can be included – such as the source and date for
the population figure of a city [79].

To date, Wikidata contains roughly 16 million entities13 and 66 million
facts14. Its schema defines roughly 23,000 classes15 and 1,600 properties16.

2.4 DBpedia

DBpedia is a knowledge graph which is extracted from structured data in Wiki-
pedia. The main source for this extraction are the key-value pairs in the Wiki-
pedia infoboxes. In a crowd-sourced process, types of infoboxes are mapped to
the DBpedia ontology, and keys used in those infoboxes are mapped to properties
in that ontology. Based on those mappings, a knowledge graph can be extracted
[30].

The most recent version of the main DBpedia (i.e., DBpedia 2016-10) con-
tains 5.1 million entities and almost 400 million facts.17 The ontology comprises
754 classes and 2,849 properties.

9 http://www.freebase.com
10 These numbers have been gathered by queries against Freebase’s query endpoint.
11 http://wikimediafoundation.org/
12 http://plus.google.com/109936836907132434202/posts/3aYFVNf92A1
13 http://www.wikidata.org/wiki/Wikidata:Statistics
14 http://tools.wmflabs.org/wikidata-todo/stats.php
15 http://tools.wmflabs.org/wikidata-exports/miga/?classes\#_cat=Classes
16 http://www.wikidata.org/wiki/Special:ListProperties
17 http://wiki.dbpedia.org/dbpedia-2016-04-statistics

2.5 YAGO

Like DBpedia, YAGO is also extracted from DBpedia. YAGO builds its clas-
sification implicitly from the category system in Wikipedia and the lexical re-
source WordNet [41], with infobox properties manually mapped to a fixed set
of attributes. While DBpedia creates different interlinked knowledge graphs for
each language edition of Wikipedia [4], YAGO aims at an automatic fusion of
knowledge extracted from various Wikipedia language editions, using different
heuristics [33].

The latest release of YAGO, i.e., YAGO3, contains 5.1 million entities and
1.5 billion million facts. The schema comprises roughly 488,000 classes and 77
properties [33].

2.6 NELL

While DBpedia and YAGO use semi-structured content as a base, methods for
extracting knowledge graphs from unstructured data have been proposed as
well. One of the earliest approaches working at web-scale was the Never End-
ing Language Learning (NELL) project [5]. The project works on a large-scale
corpus of web sites and exploits a coupled process which learns text patterns
corresponding to type and relation assertions, as well as applies them to extract
new entities and relations. Reasoning using a light-weight ontology18 is applied
for consistency checking and removing inconsistent axioms. The system is still
running today, continuously extending its knowledge base. While not published
using Semantic Web standards, it has been shown that the data in NELL can
be transformed to RDF and provided as Linked Open Data as well [83].

In its most recent version, NELL contains roughly 2 million entities and 3
million relations between those. The NELL ontology defines 285 classes and 425
properties.

2.7 DBkWik

DBkWik uses the software that is used to build DBpedia, and applies it to a
multitude of Wiki dumps collected from a large Wikifarm, i.e., Fandom powered
by Wikia.19. The most recent version, i.e., DBkWik version 1.1., integrates data
extracted from 12,840 Wiki dumps, comprising 14,743,443 articles in total. While
DBpedia relies on a manually created ontology and mappings to that, such an
ontology does not exist for DBkWik, i.e., the schema for DBkWik needs to be
inferred on the fly. Moreover, while for Wikipedia-centric knowledge graphs like
DBpedia, there are rarely any duplicate entities (since each entity corresponds
to exactly one page in Wikipedia), duplicates exist in DBkWik both on in the
A-box and the T-box, and need to be handled in an additional integration step.
Figure 2 illustrates the creation process of DBkWik.

18 The ontology has the complexity SRF(D), it mainly defines a class and a property
hierarchy, together with domains, ranges, and disjointness statements.

19 http://www.wikia.com/fandom

Dump
Downloader

Extraction
Framework

Interlinking
Instance
Matcher

Schema
Matcher

MediaWiki Dumps Extracted RDF

Internal Linking
Instance
Matcher

Schema
Matcher

Consolidated
Knowledge Graph

DBkWik
Linked
Data
Endpoint

1 2

345

Fig. 2: The DBkWik creation process [26]

As a result, the latest release of DBkWik comprises 11M entities and 96M
facts. With 12k classes and 129k relations, the schema is fairly detailed.

2.8 WebIsALOD

While the above knowledge graphs cover a multitude of different relations be-
tween entities, the WebIsALOD dataset is focusing solely on building a large-
scale hierarchy of concepts, i.e., it builds a lattice of hypernymy relations. To that
end, it scans the Common Crawl Web corpus20 for so-called Hearst patterns, e.g.
X such as Y, to infer relations like X skos:broader Y. The graph comes with
very detailed provenance data, including the patterns used and the original text
snippets, together with their sources [25]. Figure 3 depicts the schema of We-
bIsALOD, illustrating the richness of its metadata.

In total, WebIsALOD contains more than 212 million entities (however, it
does not strictly separate between an entity and a class), and 400 million hy-
pernymy relations.

Table 1 gives an overview of the knowledge graphs discussed above and their
characteristics.21 The table depicts the number of entities and relations, as well
as the average indegree and outdegree of entity (i.e., the average number of
ingoing and outgoing relations for each entity), as well as the size of the schema
in terms of the number of classes and properties.

2.9 Non-public Knowledge Graphs

Furthermore, company-owned knowledge graphs exist, like the already men-
tioned Google Knowledge Graph, Google’s Knowledge Vault [11], Yahoo’s Knowl-
edge Graph [2], Microsoft’s Satori, and Facebook’s Knowledge Graph. However,
those are not publicly available, and hence neither suited to build applications
by parties other than the owners, nor can they be analyzed in depth.

20 http://commoncrawl.org/
21 The numbers are taken from [24] and [61].

isa:concept/_Gmail_

isa:concept/Web_service_

skos:broader

„Web service“
rdfs:label

prov:wasDerivedFrom
isa:116267695

rdf:type

„Still, people use Gmail
and other Web services “

prov:wasQuotedFrom

isa:extract_p1_Activity

prov:Activity

rdf:type

prov:used

„NPi and other NPc“

isa:p1_Pattern prov:Entity
rdf:type

prov:wasGeneratedBy

rdfs:comment

rdfs:label
„P1 pattern “

isa:hasPidSpread

69

isa:hasPldSpread

isa:hasFrequency

isa:hasPreModifier

isa:hasPostModifier

isa:hasHead

isa:prov/319282439

„Web“

„service“

8

57

0.92
isa:hasConfidence

prov:Entity

rdf:type

prov:Entity

prov:value

piclist.com

„(\p{L}|\d)[…“
isa:hasRegex

http://dx.doi.org/...

prov:wasDerivedFrom

„compact“
isa:hasType

Fig. 3: The schema of the WebIsALOD knowledge graph [24]

Table 1: Public cross-domain knowledge graphs and their size
Knowledge Graph # Entites # Facts Avg. indegree Avg. outdegree # Classes # Properties
OpenCyc 118,499 2,413,894 10.03 9.23 116,822 165
NELL 1,974,297 3,402,971 5.33 1.25 290 1,334
YAGO3 5,130,031 1,435,808,056 9.83 41.25 30,765 11,053
DBpedia 5,109,890 397,831,457 13.52 47.55 754 3,555
DBkWik 11,163,719 91,526,001 0.70 8.17 12,029 128,566
Wikidata 44,077,901 1,633,309,138 9.83 41.25 30,765 11,053
WebIsALOD 212,184,968 400,533,808 3.72 3.31 – 1

3 Using Machine Learning for Building and Refining
Knowledge Graphs

As discussed above, large-scale knowledge graph can hardly be created manually
[49]. Therefore, heuristics are quite frequently used in the creation of knowledge
graphs, i.e., methods that can efficiently create large-scale knowledge graphs,
trading off data volume for accuracy.

Machine learning methods can serve as a technique to implement such heuris-
tics. They are widely used both in the creation of a knowledge graph (e.g., for
NELL, whose creation is fully machine-learning based), as well as in the subse-
quent refinement of the generated knowledge graphs [47].

3.1 Type and Relation Prediction

No knowledge graph will ever contain every piece of knowledge that exists in
the world. Therefore, all knowledge graphs, no matter whether they are created
manually or heuristically, can have only incomplete knowledge.

Being grounded in semantic web standards, which adhere to the open world
assumption, this is not a problem from a logical perspective. However, in many

Pe
rs
on

Co
m
pa
ny

Fi
lm

Or
ga
nis
at
ion

Aw
ar
d
Pl
ac
e
St
ar

Bu
ild
ing

Bo
ok

Si
ng
le

Un
ive
rs
ity

Ve
nu
e

Vi
de
oG
am
e

Co
nc
en
tra
tio
nC
am
p

M
ot
or
sp
or
tS
ea
so
n

So
ftw
ar
e
Ba
nd

Ai
rc
ra
ft
Pl
an
t
Sh
ip

0

20000

40000

Te
lev
isi
on
Sh
ow

Pe
rs
on

Co
m
pa
ny
Pl
ac
e

Lo
ca
tio
n
Fi
lm
Bo
ok

Po
pu
lat
ed
Pl
ac
e

So
ftw
ar
e

Di
se
as
e
Ba
nd

Bu
ild
ing

Co
un
try

M
ilit
ar
yC
on
flic
t

Un
ive
rs
ity

El
ec
tio
n

Sp
or
ts
Te
am
Ev
en
t

Br
oa
dc
as
te
r

M
ilit
ar
yU
nit

0

1000

2000

3000

Fig. 4: Distribution of the subject (left) and object (right) types of the knownFor
relation

application scenarios, the value of a knowledge graph grows with the amount of
knowledge encoded therein. Therefore, a lot of work as been devoted on knowl-
edge graph completion [47].

As discussed above, semantic web knowledge graphs come with a common
schema or ontology, which usually define a – sometimes deeper, sometimes more
shallow – hierarchy of classes. Hence, adding missing type information is an
important and frequently addressed task in knowledge graph completion.

One of the simplest and hence most scalable approaches is SDType [51].
SDType considers each relation in which an entity takes part as an indicator for
its type. For example, the statement

Germany hasCapital Berlin .

involves the two entities Germany and Berlin, connected by the relation has-

Capital. Each relation has a specific distribution of types of entities it con-
nects. For example, considering all the pairs of entities connected by the relation
hasCapital and analyzing their types, there is a high probability that the sub-
ject is of type Country and the object is of type City.

SDType computes a weighted average across all relations an entity (such as
Berlin) is connected by, using their specific distribution of subject and object
types. Here, most of the relations Berlin will have a high probability of the
entity being a City. The weights are assigned by the specificity of the relation
w.r.t. types. For example, the relation hasCapital is very specific for the subject
and the object (it mostly links geographic regions to cities), whereas the relation
knownFor is only specific for the subject (it is mainly used for subjects of type
Person), but very unspecific for the object (persons can be known for lots of
different things, i.e., the distribution of types for the object of knownFor is rather
wide). This is illustrated in Fig. 4: when observing a knownFor relation between
two entities, it is very likely that the subject is of type Person, whereas such a
conclusion is more difficult for the object.

Due to its simplicity, it is possible to develop well performing implementations
of SDType, and the algorithm has meanwhile been integrated in DBpedia and
used for building DBpedia releases.

The predictions of SDType are coherent with the existing type hierarchy,
given that the type information is fully materialized on the input knowledge
graph – i.e., it holds that for each subclass relation R v S, if R(a) is contained in
the knowledge graph, then S(a) is also contained. However, this is a characteristic
by design, but SDType does not specifically exploit the hierarchy information.

Looking at type prediction from a machine learning perspective, it can be
considered a hierarchical multi-label classification problem, i.e., a classification
problem where each instance can belong to multiple classes, and those classes
form a hierarchy [75]. In [36], we have shown that the type prediction prob-
lem can be well solved using a hierarchical classification problem. We used a
local classifier per node, i.e., we train a classifier for each class in the hierarchy,
sampling instances from the class’ neighbors in the hierarchy as negative train-
ing examples. Since the problem is thereby decomposed into smaller learning
problems, the solution becomes scalable and even largely parallelizable.

The scalability of type prediction using hierarchical classification can be even
further improved when taking into account that only a small subset of fea-
tures is required to tell a class from its siblings. For example, for telling a per-
son from an organization, a few relations like ceo, headquarter, birthplace,
and nationality are sufficient. For telling a movie from a book, relations like
director, studio, author, and publisher are helpful. Incorporating local fea-
ture selection, i.e., determining a small subset of relevant features for each in-
dividual classification problem within the hierarchical classification, allows the
approach to be scaled to very large knowledge graphs [34].

Type information is often used as a prediction target, but other relations are
possible prediction targets as well. Usually, the knowledge graph itself is used as
ground truth, i.e., every relation assertion in the knowledge graph is used as a
positive training example. Since semantic web knowledge graphs follow the open
world assumption, and machine learning classifiers usually expect both positive
and negative examples, a common trick to generate negative examples is the
so-called partial completeness assumption [15] or local closed world assumption
[11]: it is assumed that if there is set of objects o1...on for a given subject s and
a relation r, i.e., r(s, o1), r(s, o2), ...r(on) are contained in the knowledge graph,
then this information is complete w.r.t. s, i.e., there is no o′ /∈ {o1, ..., on} so
that r(s, o′) holds.

Building on this assumption, the approach sketched in [23] uses abstracts in
Wikipedia pages are used to train a classifier for each relation. It considers each
entity linked within an abstract in a Wikipedia page as a candidate relation.
Then, it uses a set of features to learn heuristic rules, such as: The first place to
be mentioned in an article about a person is that person’s birth place. Using those
heuristic rules, about 1M additional statements could be learned for DBpedia.
The approach has been shown to work for Wikipedia pages of any language, and
even for other Wikis, and is therefore also applicable to DBkWik [22].

3.2 Error Detection

Most heuristics used for knowledge graph construction have to address a trade-
off between size and accuracy of the resulting knowledge graph. Decent sized
knowledge graphs can only be constructed heuristically by accepting a certain
level of noise.

For that reason, a few approaches have been proposed to identify wrong facts
in a knowledge graph. Again, a simplistic approach named SDValidate follows

the same basic idea of SDType, i.e., using statistical distribution of types in
the subject and object positions of a statement [52]. A statement is considered
wrong by the approach if the types in the subject and object position differ
significantly from the predicate’s characteristic distribution.

While SDType is quite stable since it combines a lot of evidence (i.e., many
relations in which an instance is involved) and improves with the connectivity of
the underlying knowledge graph, SDValidate is less powerful since it usually has
only fewer information to work with, i.e., the explicit types set for an entity are
typically less than the average degree [61]. Therefore, additional evidence needs
to be taken into account to reliably flag wrong relations.

PaTyBRED is a machine-learning based approach that does not only rely on
type features, but also on paths in which an entity is involved. It uses relations
in the knowledge graph as positive training examples, and creates negative ex-
amples by randomly replacing the subject or object with another instance from
the knowledge graph.22

For training a model, PaTyBRED takes into account both types and paths,
and therefore, it can also learn that the path residence(X,Y), country(Y,Z) is
positive evidence for the relation assertion nationality(X,Z). We have shown
that this combination outperforms both approaches based on types and based
on paths alone.

An alternative to addressing error detection as a binary classification prob-
lem is assigning a confidence score to each entity. This approach is applied to
building the WebIsALOD dataset. Here, we use a crowd-sourced gold standard
of positive and negative examples (i.e., randomly selected examples from the
initial extraction presented to human judges for validation) to train a classifier
for telling correct from incorrect relations, using the rich provenance metadata.
Instead of discarding the negative examples, we attach the classifier’s confidence
score as a confidence to each individual statement [24].

Both approaches – identifying and removing errors, as well as using confi-
dence scores – have their advantages and disadvantages. Removing wrong state-
ments leads to a clean and intuitively usable dataset, and also reduces that
dataset’s size, which can help in the processing. On the other hand, keeping all
statements and attaching a confidence score has the advantage of letting the
user set an individual threshold, thereby deciding on whether higher recall or
higher precision is required for a given task at hand. Furthermore, it opens the
opportunity to process the dataset with methods being able to deal with such
imprecision, e.g., probabilistic and possibilistic reasoners [55].

3.3 Approximate Local Reasoning

As discussed above, many knowledge graphs come with an ontology, which may
be more or less formal. Given that a certain degree of formality is provided,

22 While more complex strategies for generating meaningful negative training examples
exist [29], we have observed no significant qualitative difference in the resulting
models’ accuracy to creating random negative examples, although those complex
strategies are computationally much more expensive.

i.e., the ontology does not only define a class hierarchy and domain and range
restrictions for the properties, but also more restrictions, such as disjoint classes,
the knowledge graph can be validated against the ontology. For example, if the
two classes City and Team are defined as disjoint classes, the range of playsFor
is Team, and the two axioms playsFor(Ronaldo,Madrid) and City(Madrid)
are defined in the knowledge graph, the combination of both axioms can be
detected as a violation of the underlying ontology – although deciding which of
the two axioms is wrong is not possible with automatic reasoning.

Some knowledge graphs, such as DBpedia and NELL, validate new axioms
against an existing ontology before adding them to the knowledge graph. For DB-
pedia, there also exists a mapping to the top level ontology DOLCE [16], which
can be used to detect more violations against the ontology. For example, the
statement award(TimBernersLee,RoyalSociety), together with Organization
(RoyalSociety) and the range of award being defined as Award, is not a viola-
tion against the DBpedia ontology, since there is no explicit disjointness between
Award and Organization. In contrast, the usage of DOLCE defines the corre-
sponding super classes (i.e., Description and SocialAgent) as disjoint. Hence,
exploiting the additional formalism of the upper level ontology of DOLCE leads
to detecting more inconsistencies [54].

An issue with using reasoning, or even local reasoning (i.e., reasoning only
on a statement and its related statements) to detect inconsistencies, is compu-
tationally expensive: Validating all statements in DBpedia against the DBpedia
and DOLCE ontology using a state of the art reasoner like HermiT [17] would
take several weeks. In [57], we have introduced an approach that approximates
reasoning-based fact checking by exploiting machine learning: we treat the val-
idation problem as a binary classification problem, and let a reasoner validate
a small number of statements as consistent or inconsistent. Those examples are
then used to train a classifier, whose model approximates the reasoner’s behav-
ior. It has been shown that such models can reach an accuracy above 95%, at the
same time being some orders of magnitude faster: instead of several weeks, the
consistency of all statements in DBpedia can validated in less than two hours.

3.4 Deriving Higher Level Patterns

Once erroneous statements have been identified, there are several ways to pro-
ceed. For once, they can be simply removed from the knowledge graph. Second,
as for WebIsALOD, they may get lower confidence ratings and defer the decision
to a later point.

However, analyzing (potentially) erroneous statements more deeply can also
reveal further insights. Clustering the errors may reveal groups of similar errors,
which may have a common root [54]. Such common roots may be errors in the
ontology, in particular translation statements (e.g., for DBpedia: mappings from
a Wikipedia infobox to the common ontology) [60], or the handling of particular
kinds of input, such as numerical values [14, 80], dates, links with hashtags, etc.
[48].

Once the root cause is identified, it is possible to track back the issue and
address it at the respective place, i.e., improving the creation process of the
knowledge graph. The advantage is that a group of errors can be addressed with
a single fix, and the result is sustainable, i.e., it is also applied for any future
version of the same knowledge graph [48]. Moreover, grouping errors can also
serve as a sanity check: if an identified error does not belong to any group, i.e.,
it only occurs as a single, isolated statement, it is often a false negative, i.e., a
wrongly identified error [54].

3.5 Evaluating Machine Learning on Knowledge Graphs

Although there is a larger body of work in applying machine learning methods
to knowledge graph refinement, there is no common standard evaluation proto-
col and set of benchmarks. Methods encompass evaluation against (partial) gold
standards, the knowledge graph itself (treated as a silver standard), and retro-
spective evaluations, i.e., evaluating the output of the knowledge graph. With
respect to evaluation methods, precision and recall are quite frequently used,
but other metrics, e.g., accuracy, area under the precision-recall curve (AUC-
PR), area under the ROC curce (AUC-ROC), etc. [6], are also observed. As an
additional dimension to result quality, computational performance can also be
evaluated.

In [47], we have observed that a majority of all approaches is only evaluated
against one knowledge graph, usually DBpedia (see Fig. 5). This often limits the
significance of the results, because it is unclear whether the approach overfits
and/or consciously or unconsciously exploits of the specific knowledge graph
at hand. Therefore, evaluations against multiple knowledge graphs are clearly
advised.

3.6 Partial Gold Standard

One common evaluation strategy is to use a partial gold standard. In this
methodology, a subset of graph entities or relations are selected and labeled
manually. Other evaluations use external knowledge graphs and/or databases as
partial gold standards.

For completion tasks, this means that all axioms that should exist in the
knowledge graph are collected, whereas for correction tasks, a set of axioms in
the graph is manually labeled as correct or incorrect. The quality of completion
approaches is usually measured in recall, precision, and F-measure, whereas for
correction methods, accuracy and/or area under the ROC curve (AUC) are often
used alternatively or in addition.

Sourcing partial gold standards from humans can lead to high quality data
(given that the knowledge graph and the ontology it uses are not overly complex),
but is costly, so that those gold standards are usually small. Exploiting other
knowledge graphs based on knowledge graph interlinks (e.g., using Freebase data
as a gold standard to evaluate DBpedia) is sometimes proposed to yield larger-
scale gold standards, but has two sources of errors: errors in the target knowledge

graph, and errors in the linkage between the two. For example, it has been
reported that 20% of the interlinks between DBpedia and Freebase are incorrect
[81], and that roughly half of the owl:sameAs links between knowledge graphs
connect two things which are related, but not exactly the same (such as the
company Starbucks and a particular Starbucks coffee shop) [19].

3.7 Knowledge Graph as Silver Standard

Another evaluation strategy is to use the given knowledge graph itself as a test
dataset. Since the knowledge graph is not perfect (otherwise, refinement would
not be necessary), it cannot be considered as a gold standard. However, assuming
that the given knowledge graph is already of reasonable quality, we call this
method silver standard evaluation, as already proposed in other works [18, 27,
45].

The silver standard method is usually applied to measure the performance of
knowledge graph completion approaches, where it is analyzed how well relations
in a knowledge graph can replicated by a knowledge graph completion method.
As for gold standard evaluations, the result quality is usually measured in recall,
precision, and F-measure. In contrast to using human annotations, large-scale
evaluations are easily possible. The silver standard method is only suitable for
evaluating knowledge graph completion, not for error detection, since it assumes
the knowledge graph to be correct.

There are two variants of silver standard evaluations: in the more common
ones, the entire knowledge graph is taken as input to the approach at hand, and
the evaluation is then also carried out on the entire knowledge graph. As this
may lead to an overfitting effect (in particular for internal methods), some works
also foresee the splitting of the graph into a training and a test partition, which,
however, is not as straight forward as, e.g., for propositional classification tasks
[44], which is why most papers use the former method. Furthermore, split and
cross validation do not fully solve the overfitting effect. For example, if a knowl-
edge graph, by construction, has a bias towards certain kinds of information
(e.g., relations are more complete for some classes than for others), approaches
overadapting to that bias will be rated better than those which do not (and
which may actually perform better in the general case).

Since the knowledge graph itself is not perfect, this evaluation method may
sometimes underrate the evaluated approach. More precisely, most knowledge
graphs follow the open world assumption, i.e., an axiom not present in the
knowledge graph may or may not hold. Thus, if a completion approach cor-
rectly predicts the existence of an axiom missing in the knowledge graph, this
would count as a false positive and thus lower precision. Approaches overfitting
to the coverage bias of a knowledge graph at hand may thus be overrated.

3.8 Retrospective Evaluation

For retrospective evaluations, the output of a given approach is given to human
judges for annotation, who then label suggested completions or identified errors

Table 2: Overview on evaluation methods with their advantages and disadvan-
tages [47]

Methodology Advantages Disadvantages

Partial Gold Standard highly reliable results
reusable

costly to produce
balancing problems

Knowledge Graph as Sil-
ver Standard

large-scale evaluation
feasible
subjectiveness is mini-
mized

less reliable results
prone to overfitting

Retrospective Evaluation applicable to disbalanced
problems
allows for more detailed
analysis of
approaches

not reusable
approaches cannot be
compared directly

as correct and incorrect. The quality metric is usually accuracy or precision,
along with a statement about the total number of completions or errors found
with the approach, and ideally also with a statement about the agreement of the
human judges.

In many cases, automatic refinement methods lead to a very large number of
findings, e.g., lists of tens of thousands of axioms which are potentially erroneous.
Thus, retrospective evaluations are often carried out only on samples of the
results. For some approaches which produce higher level artifacts – such as error
patterns or completion rules – as intermediate results, a feasible alternative is
to evaluate those artifacts instead of the actually affected axioms.

While partial gold standards can be reused for comparing different methods,
this is not the case for retrospective evaluations. On the other hand, retrospec-
tive evaluations may make sense in cases where the interesting class is rare. For
example, when evaluating error detection methods, a sample for a partial gold
standard from a high-quality graph is likely not to contain a meaningful num-
ber of errors. In those cases, retrospective evaluation methodologies are often
preferred over partial gold standards.

Another advantage of retrospective evaluations is that they allow a very
detailed analysis of an approach’s results. In particular, inspecting the errors
made by an approach often reveals valuable findings about the advantages and
limitations of a particular approach.

Table 2 sums up the different evaluation methodologies and contrasts their
advantages and disadvantages.

3.9 Computational Performance

In addition to the performance w.r.t. correctness and/or completeness of results,
computational performance considerations become more important as knowledge
graphs become larger. Typical performance measures for this aspect are runtime
measurements, as well as memory consumption. Besides explicit measurement of

Completion Error Detection Both
0

2

4

6

8

10

12

14

16

Partial Gold Standard

KG as Silver Standard

Retrospective

(a) by method

Partial Gold Standard KG as Silver Standard Retrospective
0

2

4

6

8

10

12

14

16

Precision/recall

Total Axioms

Other

(b) by metric

DBpedia Freebase YAGO NELL Other
0

5

10

15

20

25

30

One KG

More than one KG

(c) by dataset

Computational performance
reported

Approach carried out on a large
graph

Both

None

(d) by performance evaluation

Fig. 5: Breakdown of evaluations observed in [47] by method, metrics, dataset,
and computational performance evaluation

computational performance, a “soft” indicator for computational performance
is whether an approach has been evaluated (or at least the results have been
materialized) on an entire large-scale knowledge graph, or only on a subgraph.
The latter is often done when applying evaluations on a partial gold standard,
where the retrospective approach is only executed on entities contained in that
partial gold standard.

Furthermore, synthetic knowledge graphs, constructed with exactly specified
characteristics, can assist in more systematic scalability testing [35].

4 Using Knowledge Graphs for Machine Learning

The common task of data mining is to discover patterns in data, which can be
used either to gain a deeper understanding of the data (i.e., descriptive data
mining), or for predictions of future developments (i.e., predictive data mining).
For solving those tasks, machine learning methods are used.

Fayyad et al. have introduced a prototypical pipeline which leads from data
to knowledge, comprising the steps of selection, preprocessing, transformation
of data, applying some machine learning or data mining, and interpreting the
results [13]. As depicted in Fig. 6 and discussed in detail in [69], Linked Data
and, in particular, semantic web knowledge graphs can be used at almost every
stage in the process: the first step is to link the data to be analyzed to the corre-
sponding concepts in a knowledge graph. Once the local data is linked to a LOD

dataset, we can explore the existing links in the knowledge graph pointing to
related entities in the knowledge graph, as well as follow links to other graphs.
In the next step, various techniques for data consolidation, preprocessing, and
cleaning are applied, e.g., schema matching, data fusion, value normalization,
treatment of missing values and outliers, etc. Next, some transformations on the
collected data need to be performed in order to represent the data in a way
that it can be processed with any arbitrary data analysis algorithms. Since most
algorithms demand a propositional form of the input data (i.e., each entity being
represented as a set of features), this usually includes a transformation of the
knowledge graph to a canonical propositional form. After the data transforma-
tion is done, a suitable data mining algorithm is selected and applied on the
data. In the final step, the results of the data mining process are presented to
the user. Here, ease the interpretation and evaluation of the results of the data
mining process, where knowledge graphs can be used as well. [69]

Fig. 6: Enhancing the data mining workflow by Fayyad et al. with Linked Data
[69], based on [13]

4.1 Simple Feature Engineering

One of the main issues for exploiting knowledge graphs in machine learning
tasks is that most machine learning algorithms are tailored towards propositional
data, i.e., data where each instance is represented as a row in a table as a set of
attribute values, also called features. In contrast, each instance in a knowledge
graph is a node in a graph, connected to other nodes via edges. Hence, for being

able to apply a machine learning algorithm to a set of instances in a knowledge
graph, those have to be transferred into a propositional form first, a process
which we call propositionalization [65].

Generally, there are two families of approaches for feature engineering from
semantic web knowledge graphs: supervised and unsupervised [53].

For supervised approaches, knowledge about the knowledge graph at hand
and its vocabulary is required. This can be either hard coded in the application,
e.g., by adding features for genre and actors to a movie [7], or by letting the
user specify queries to the knowledge graph, assuming that the user knows the
graph’s schema in depth [28].

Unsupervised approaches, on the other hand, do not make any assumptions
about the dataset at hand. In contrast, they rather create features dynamically
for all entities they encounter, e.g., by creating a numerical feature for each
numerical literal, a set of binary features for each entity’s classes, etc. These
approaches have been shown to create valuable data mining features for a lot of
machine learning problems, however, they may also lead to a very large set of
features, many of which are actually not very valuable, e.g., because of sparsity
or uniformity. For example, for a dataset of movies, the information on which
novels they are based may be very sparse (since most movies are not based on
novels). On the other hand, almost23 of all them will be identified as being of
type Movie. Therefore, this feature is not very informative, since it contains the
same information for (almost) all entities.

To address the potentially large number of non-informative features and pick
the subset of those which are valuable, feature subset selection [9, 42] has to
be applied. Once the data is in propositional form, standard feature selection
algorithms can be applied [62]. However, since knowledge graphs also have in-
formation about semantics, it is valuable to incorporate that semantics into the
feature subset selection process. For example, for features that form a hierarchy
(such as types and categories), we have shown that this hierarchy information
bears valuable information for the feature subset selection, since it allows for
heuristically discarding features that are either too abstract or too generic [66].
This is illustrated in Figure 7: for a dataset of persons in general, it may be spe-
cific enough to distinguish them by profession, whereas for a dataset of athletes,
a finer grained set of features may be more useful.

4.2 Feature Vector Generation using RDF2vec

As discussed above, simple feature creation techniques lead to a large number
of features, which, at the same time, are often rather sparse, i.e., each feature in
itself carries only little information. This lead us to the development of RDF2vec,
a method for creating universal, re-usable dense feature vectors from knowledge
graphs. We have shown that even with moderately sized feature vectors (200 to
500 features), it is possible to outperform simple feature generation techniques
on many tasks, at the same time allowing for re-using the same set of features

23 Due to the open world assumption, it is likely that this does not hold for all movies.

Baseball
Player

Basketball
Player

Person

Athlete

Figure
Skate

Cyclist Physicist President
Prime

Minister
Mayor

PoliticianScientist

Fig. 7: A sample hierarchy of type features [66]

across tasks, which minimizes the effort of feature generating for a new task. [68,
70].

In a nutshell, RDF2vec picks up the idea of word2vec [39], which creates
feature vector representations for word. Given a text corpus, word2vec trains a
neural network for either predicting the surroundings of a word (context bag of
words or CBOW variant), or a word, given its surroundings (skip-gram or SG
variant). For example, for the sentence

Trent Reznor founded the band Nine Inch Nails in 1988

CBOW takes a single word (such as Reznor) as input and try to predict a set
of probably surrounding words (such as Trent, band, Nine, Inch, etc.), while SG
takes a set of words (e.g., Trent, founded, the, band, ...) and tries to predict a
word that ”‘misses”’ in that set (e.g., Reznor).

The CBOW model predicts target words from context words within a given
window. The model architecture is shown in Fig. 8a. The input layer is comprised
from all the surrounding words for which the input vectors are retrieved from
the input weight matrix, averaged, and projected in the projection layer. Then,
using the weights from the output weight matrix, a score for each word in the
vocabulary is computed, which is the probability of the word being a target word.
Formally, given a sequence of training words w1, w2, w3, ..., wT , and a context
window c, the objective of the CBOW model is to maximize the average log
probability:

1

T

T∑
t=1

logp(wt|wt−c...wt+c), (1)

where the probability p(wt|wt−c...wt+c) is calculated using the softmax function:

p(wt|wt−c...wt+c) =
exp(v̄T v′wt

)∑V
w=1 exp(v̄

T v′w)
, (2)

where v′w is the output vector of the word w, V is the complete vocabulary of
words, and v̄ is the averaged input vector of all the context words:

v̄ =
1

2c

∑
−c≤j≤c,j 6=0

vwt+j (3)

(a) CBOW architecture (b) Skip-gram architecture

Fig. 8: Architecture of the CBOW and Skip-gram model [68]

The skip-gram model does the inverse of the CBOW model and tries to pre-
dict the context words from the target words (Fig. 8b). More formally, given a
sequence of training words w1, w2, w3, ..., wT , and a context window c, the objec-
tive of the skip-gram model is to maximize the following average log probability:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

logp(wt+j |wt), (4)

where the probability p(wt+j |wt) is calculated using the softmax function:

p(wo|wi) =
exp(v′Twovwi)∑V
w=1 exp(v

′T
w vwi)

, (5)

where vw and v′w are the input and the output vector of the word w, and V is
the complete vocabulary of words.

In both cases, calculating the softmax function is computationally inefficient,
as the cost for computing is proportional to the size of the vocabulary. Therefore,
two optimization techniques have been proposed, i.e., hierarchical softmax and
negative sampling [40]. Empirical studies haven shown that in most cases neg-
ative sampling leads to a better performance than hierarchical softmax, which
depends on the selected negative samples, but it has higher runtime.

Since knowledge graphs are not a text corpus, pseudo sentences are generated
by performing random walks on the knowledge graph, and feeding the resulting
sequences into the word2vec model.

Once the training is finished, all words (or, in our case, entities) are pro-
jected into a lower-dimensional feature space, and semantically similar words
(or entities) are positioned close to each other.

The word2vec vector space representations for words have been shown to
have two properties, among others: (1) semantically similar words are close in
the resulting vector space, and (2) the direction of both grammatical as well
as semantic relations between words remains stable for different pairs of words.
Besides being able to use RDF2vec as a versatile and well performing feature
vector generator, we have observed the same properties for RDF2vec as well, as
depicted in figure 9.

(a) DBpedia vectors (b) Wikidata vectors

Fig. 9: Two-dimensional PCA projection of the 500-dimensional skip-gram vec-
tors of countries and their capital cities [68]

To visualize the semantics of the vector representations, we employ Principal
Component Analysis (PCA) to project the entities’ feature vectors into a two
dimensional feature space. We selected seven countries and their capital cities,
and visualized their vectors as shown in Figure 9. Figure 9a shows the corre-
sponding DBpedia vectors, and Figure 9b shows the corresponding Wikidata
vectors. The figure illustrates the ability of the model to automatically orga-
nize entities of different types, and preserve the relationship between different
entities. For example, we can see that there is a clear separation between the
countries and the cities, and the relation capital between each pair of country
and the corresponding capital city is preserved. Furthermore, we can observe
that more similar entities are positioned closer to each other, e.g., we can see
that the countries that are part of the EU are closer to each other, and the same
applies for the Asian countries.

Using random walks for creating the sequences to be fed into the RDF2vec
model is a straight forward and efficient approach, but has its pitfalls as well.
Since not all entities and relations in a knowledge graph are equally important,
putting more emphasis on the more important paths could lead to an improved
embedding. However, telling an important from a less important relation, espe-
cially when attempting to create a task agnostic feature representation, is a hard
problem.

In [8], we have explored a total of 12 different heuristics to guide the RDF
graph walks towards more important paths, based on the frequency of properties,
entities, and combinations of properties and entities, as well as the PageRank [3]
of entities [76]. In that work, we could show that different heuristics, especially
those based on PageRank, can improve the results in many cases, however, the
interaction effects between the dataset or task at hand, the machine learning
algorithm used, and the heuristic used to generate the paths are still underex-

plored, so that it is difficult to provide a decision guideline on which strategy
works best for a given task.

4.3 Example Application 1: Recommender Systems

The purpose of recommender systems is to suggest items to users that they might
be interested in, given the past interactions of users and items. Interactions can
be implicit (e.g., users looking at items in an online store) or explicit (e.g., users
buying items or rating them). [59]

Generally, there are two directions of recommender systems:

Collaborative filtering recommender systems, which rely on the interac-
tions of users and items, and

Content based recommender systems, which rely on item similarity and
suggest similar items.

Hybrid approaches, combining collaborative and content based mechanisms, ex-
ist as well. For collaborative filtering, there are two variants, i.e., user based and
item based.

Content based approaches can benefit massively from knowledge graphs.
Given that a dataset of items (e.g., movies, books, music titles) is linked to
a knowledge graph, background information about those items can be retrieved
from the knowledge graph, both in the form of direct interlinks between items
(e.g., movies by the same director), as well as in the form of similar attributes
(e.g., movies with a similar budget, runtime, etc.).

For the 2014 Linked Open Data-enabled recommender systems challenge [10],
book recommendations had to be computed, with all the books in the dataset
linked to DBpedia. There were two tasks: task 1 was the prediction of a user’s
rating given a user and a product, whereas task 2 was an actual recommendation
task (i.e., proposing items to users). We made an experiment [63] using the
software RapidMiner24, together with two extensions: the Linked Open Data
extension, which implements most of the algorithms discussed above [62], and
the recommender system extension [38].

The features for content-based recommendation were extracted from DBpe-
dia using the RapidMiner Linked Open Data extension. We use the following
feature sets for describing a book:

– All direct types of a book25

– All categories of a book
– All categories of a book’s author(s)
– All categories of a book including broader categories26

24 http://www.rapidminer.com/
25 This includes types in the YAGO ontology, which can be quite specific (e.g., Amer-

ican Thriller Novels)
26 The reason for not including broader categories by default is that the category graph

is not a cycle-free tree, with some subsumptions being rather questionable.

– All categories of a book’s author(s) and of all other books by the book’s
authors

– All genres of a book and of all other books by the book’s authors
– All authors that influenced or were influenced by the book’s authors
– A bag of words created from the abstract of the book in DBpedia. That bag

of words is preprocessed by tokenization, stemming, removing tokens with
less than three characters, and removing all tokens less frequent than 3% or
more frequent than 80%.

Furthermore, we created a combined book’s feature set, comprising direct types,
qualified relations, genres and categories of the book itself, its previous and
subsequent work and the author’s notable work, the language and publisher,
and the bag of words from the abstract.

Besides DBpedia, we made an effort to retrieve additional features from two
additional LOD sources: British Library Bibliography (BLB) and DBTropes27.
Using the RapidMiner LOD extension, we were able to link more than 90%
of the books to BLB entities, but only 15% to DBTropes entities. However,
the generated features from BLB were redundant with the features retrieved
from DBpedia, and the coverage of DBTropes was too low to derive meaningful
features. Hence, we did not pursue those sources further.

In addition to extracting content-based features, we used different generic
recommenders in our approach. First, the RDF Book Mashup dataset28 pro-
vides the average score assigned to a book on Amazon. Furthermore, DBpedia
provides the number of ingoing links to the Wikipedia article corresponding to
a DBpedia instance, and the number of links to other datasets (e.g., other lan-
guage editions of DBpedia), which we also use as global popularity measures.
Finally, SubjectiveEye3D delivers a subjective importance score computed from
Wikipedia usage information29.

To combine all feature sets into a content-based recommender engine, we
trained recommender systems on each of the feature sets individually. In order
to create a more sophisticated combination of the different base and generic
recommenders, we trained a stacking model as described in [77]: We trained
the base recommenders in 10 rounds in a cross validation like setting, collected
their predictions, and learned a stacking model on the predictions. As stacking
models, we use linear regression and random decision trees [82], a variant of
random forests, and for rank aggregation, we also use Borda rank aggregation.
Table 3 shows the results, showing both the RMSE and F1 score on the two
tasks of the challenge, as well as the weight β computed for each feature by the
linear regression meta learner.

The main learnings from the experiment were:

– Knowledge graphs can provide additional background knowledge, and con-
tent based recommender systems trained using that background knowledge
outperform collaborative filtering approaches.

27 http://bnb.data.bl.uk/ and http://skipforward.opendfki.de/wiki/DBTropes
28 http://wifo5-03.informatik.uni-mannheim.de/bizer/bookmashup/
29 https://github.com/paulhoule/telepath/wiki/SubjectiveEye3D

Table 3: Performances of the base and generic recommenders, the number of
features used for each base recommender, and the performance of the combined
recommenders

Task 1 Task 2
Recommender #Features RMSE LR β F-Score

Item-based collaborative filtering – 0.8843 +0.269 0.5621
User-based collaborative filtering – 0.9475 +0.145 0.5483

Book’s direct types 534 0.8895 -0.230 0.5583
Author’s categories 2,270 0.9183 +0.098 0.5576

Book’s (and author’s author books’) genres 582 0.9198 +0.082 0.5567
Combined book’s properties 4,372 0.9421 +0.0196 0.5557

Author and influenced/influencedBy authors 1,878 0.9294 +0.122 0.5534
Books’ categories and broader categories 1,987 0.939 +0.012 0.5509

Abstract bag of words 227 0.8893 +0.124 0.5609
RDT recommender on combined book’s properties 4,372 0.9223 +0.128 0.5119

Amazon rating – 1.037 +0.155 0.5442
Ingoing Wikipedia links – 3.9629 +0.001 0.5377
SubjectiveEye3D score – 3.7088 +0.001 0.5369
Links to other datasets – 3.3211 +0.001 0.5321

Average of all individual recommenders 14 0.8824 – –
Stacking with linear regression 14 0.8636 – 0.4645

Stacking with RDT 14 0.8632 – 0.4966
Borda rank aggregation 14 – – 0.5715

– Combining predictions with a reasonably sophisticated stacking method out-
performs simple averaging.

– Generic recommenders (i.e., global item popularity ranks) that are not taking
into account the user’s preferences are a surprisingly strong baseline.

In [71], we have explored the use of RDF2vec vector models as a means for
feature generation for recommender systems. We have shown that content-based
methods based on RDF2vec do not only outperform other feature generation
techniques, but also state of the art collaborative filtering recommender systems.

Accordingly to Figure 9a, Figure 10 depicts a 2-dimensional PCA projection
of a set of movies in the recommendation dataset. We can observe that related
movies (Disney movies, Star Trek movies, etc.) have a low distance in the vector
space, which allows for the use of content-based recommender systems based on
item similarity in the vector space.

4.4 Example Application 2: Explaining Statistics

While recommender systems are an example for predicting machine learning, i.e.,
training a model for predicting future behavior of users, semantic web knowledge
graphs can also be utilized in descriptive machine learning, where the task is
to understand a dataset. One example for this is the interpretation of a given
dataset, e.g., a collection of statistical observations.

One of the first prototypes for explaining statistical data with semantic web
knowledge graphs was Explain-a-LOD [46]. The tool takes as input a statistics
file, consisting of entities (e.g., regions) and a target variable (e.g., unemploy-
ment). It then uses a knowledge graph like DBpedia to identify factors that can
be used to explain the target variable, e.g., by measuring correlation.

Fig. 10: PCA projection of example movies

As an example, we used a dataset of unemployment in different regions in
France. Among others, Explain-a-LOD found the following (positively and nega-
tively) correlating factors, using DBpedia as a starting point, and following links
to other knowledge graphs and linked open datasets [64]:

– gross domestic product (GDP) (negative)

– available household income (negative)

– R&D spendings (negative)

– energy consumption (negative)

– population growth (positive)

– casualties in road accidents (negative)

– number of fast food restaurants (positive)

– number of police stations (positive)

In order to further inspect the findings and allowing the user to more intu-
itively interact with such interpretations, it is also possible to graphically visu-
alize the correlations, as shown in Fig. 12 [67].

While embedding based models have been shown to work well on predictive
tasks, their usage in descriptive scenarios is rather limited in contrast. Even if
we could find that certain attributes generated by an embedding model explain
a statistical variable well, this would not be very descriptive, since the embed-
ding dimensions do not come with a semantic annotation, and hence are not
interpretable by humans.

Fig. 11: Screenshot of the original Explain-a-LOD prototype

5 Conclusion and Future Directions

In this chapter, we have looked at a possible symbiosis of machine learning and
semantic web knowledge graphs from two angles: (1) using machine learning
for knowledge graphs, and (2) using knowledge graphs in machine learning. In
both areas, a larger body of works exist, and both are active and vital areas of
research.

Our recent approaches to creating knowledge graphs which are complemen-
tary to those based on Wikipedia, i.e., WebIsALOD and DBkWik, have shown
that there is an interesting potential of generating such knowledge graphs. When-
ever creating and extending a knowledge graph or mapping a knowledge graph
to existing ones, machine learning techniques can be used, either by having a
training set manually curated, or by using knowledge already present in the
knowledge graph for training models that add new knowledge or validate the
existing information.

With respect to knowledge graph creation, there are still valuable sources on
the Web that can be used. The magnitude of Wikis, as utilized by DBkWik, is
just one direction, while there are other sources, like structured annotations on
Web pages [37] or web tables [31], which can be utilized [78]. Also for Wiki-based
extractions, not all information is used to date, e.g., with the potential of tables,
lists, and enumerations still being underexplored [56, 43].

While knowledge graphs are often developed in isolation, an interesting ap-
proach would be to use them as training data to improve each other, allow-
ing cross fertilization of knowledge graphs. For example, WebIsALOD requires
training data for telling instances and categories from each other, which could

Fig. 12: Visualization of unemployment (left) and density of police stations
(right)

be gathered from DBpedia or YAGO. On the other hand, the latter are often
incomplete with type information, which could be mined using features from
WebIsALOD.

As discussed above, embedding methods are currently not usable for de-
scriptive machine learning. Closing the gap between embeddings (which produce
highly valuable features) and simple, but semantics preserving feature genera-
tion methods would help developing a new breed of descriptive machine learning
methods [50]. To that end, embeddings either need to be semantically enriched
with a posteriori developments, or trained in a fashion (e.g., by using pattern or
rule learners, such as [21]) that allow for creating embedding spaces which are
semantically meaningful.

Acknowledgements

I would like to thank (in alphabetical order) Aldo Gangemi, André Melo, Chris-
tian Bizer, Daniel Ringler, Eneldo Loza Menćıa, Heiner Stuckenschmidt, Jessica
Rosati, Johanna Völker, Julian Seitner, Kai Eckert, Michael Cochez, Nicolas
Heist, Petar Ristoski, Renato De Leone, Robert Meusel, Simone Paolo Ponzetto,
Stefano Faralli, Sven Hertling, and Tommaso Di Noia for their valuable input to
this paper.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International
journal on semantic web and information systems 5(3), 1–22 (2009)

2. Blanco, R., Cambazoglu, B.B., Mika, P., Torzec, N.: Entity Recommendations in
Web Search. In: The Semantic Web–ISWC 2013. LNCS, vol. 8219, pp. 33–48 (2013)

3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems 30(1), 107 – 117 (1998)

4. Bryl, V., Bizer, C.: Learning conflict resolution strategies for cross-language wiki-
pedia data fusion. In: Proceedings of the 23rd International Conference on World
Wide Web. pp. 1129–1134. ACM (2014)

5. Carlson, A., Betteridge, J., Wang, R.C., Hruschka Jr, E.R., Mitchell, T.M.: Cou-
pled semi-supervised learning for information extraction. In: Proceedings of the
third ACM international conference on Web search and data mining. pp. 101–110
(2010)

6. Caruana, R., Niculescu-Mizil, A.: Data mining in metric space: an empirical anal-
ysis of supervised learning performance criteria. In: Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining. pp.
69–78. ACM (2004)

7. Cheng, W., Kasneci, G., Graepel, T., Stern, D., Herbrich, R.: Automated feature
generation from structured knowledge. In: 20th ACM Conference on Information
and Knowledge Management (CIKM 2011) (2011)

8. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Biased graph walks for rdf
graph embeddings. In: Proceedings of the 7th International Conference on Web
Intelligence, Mining and Semantics. p. 21. ACM (2017)

9. Dash, M., Liu, H.: Feature selection for classification. Intelligent data analysis 1(3),
131–156 (1997)

10. Di Noia, T., Cantador, I., Ostuni, V.C.: Linked open data-enabled recommender
systems: Eswc 2014 challenge on book recommendation. In: Semantic Web Evalu-
ation Challenge. pp. 129–143. Springer (2014)

11. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann,
T., Sun, S., Zhang, W.: Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In: Proceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining. pp. 601–610. ACM (2014)

12. Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. In: SEMAN-
TiCS (2016)

13. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: Advances in knowledge disc overy
and data mining. pp. 1–34. American Association for Artificial Intelligence, Menlo
Park, CA, USA (1996), http://dl.acm.org/citation.cfm?id=257938.257942

14. Fleischhacker, D., Paulheim, H., Bryl, V., Völker, J., Bizer, C.: Detecting errors
in numerical linked data using cross-checked outlier detection. In: International
Semantic Web Conference. pp. 357–372. Springer (2014)

15. Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: AMIE: association rule
mining under incomplete evidence in ontological knowledge bases. In: 22nd inter-
national conference on World Wide Web. pp. 413–422 (2013)

16. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening
Ontologies with DOLCE. In: 13th European Conference on Knowledge Engineering
and Knowledge Management (EKAW2002). Springer (2002)

17. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: an owl 2 reasoner.
Journal of Automated Reasoning 53(3), 245–269 (2014)

18. Groza, T., Oellrich, A., Collier, N.: Using silver and semi-gold standard corpora
to compare open named entity recognisers. In: IEEE International Conference on
Bioinformatics and Biomedicine (BIBM). pp. 481–485. IEEE, Piscataway, New
Jersey (2013), http://dx.doi.org/10.1109/BIBM.2013.6732541

19. Halpin, H., Hayes, P.J., McCusker, J.P., McGuinness, D.L., Thompson, H.S.: When
owl:sameAs Isn’t the Same: An Analysis of Identity in Linked Data. In: The Seman-

tic Web – ISWC 2010, LNCS, vol. 6496, pp. 305–320. Springer, Berlin Heidelberg
(2010), http://dx.doi.org/10.1007/978-3-642-17746-0_20

20. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In:
Proceedings of the 14th conference on Computational linguistics-Volume 2. pp.
539–545. Association for Computational Linguistics (1992)

21. Hees, J., Bauer, R., Folz, J., Borth, D., Dengel, A.: An evolutionary algorithm to
learn SPARQL queries for source-target-pairs: Finding patterns for human asso-
ciations in dbpedia. CoRR abs/1607.07249 (2016), http://arxiv.org/abs/1607.
07249

22. Heist, N., Hertling, S., Paulheim, H.: Language-agnostic relation extraction from
abstracts in wikis. Information 9(4), 75 (2018)

23. Heist, N., Paulheim, H.: Language-agnostic relation extraction from wikipedia ab-
stracts. In: International Semantic Web Conference. pp. 383–399. Springer (2017)

24. Hertling, S., Paulheim, H.: Webisalod: providing hypernymy relations extracted
from the web as linked open data. In: International Semantic Web Conference. pp.
111–119. Springer (2017)

25. Hertling, S., Paulheim, H.: Provisioning and usage of provenance data in the
webisalod knowledge graph. In: First International Workshop on Contextualized
Knowledge Graphs (2018)

26. Hofmann, A., Perchani, S., Portisch, J., Hertling, S., Paulheim, H.: Dbkwik: to-
wards knowledge graph creation from thousands of wikis. In: International Seman-
tic Web Conference (Posters and Demos) (2017)

27. Kang, N., van Mulligen, E.M., Kors, J.A.: Training text chunkers on a silver
standard corpus: can silver replace gold? BMC bioinformatics 13(1), 17 (2012),
http://dx.doi.org/10.1186/1471-2105-13-17

28. Kappara, V.N.P., Ichise, R., Vyas, O.: Liddm: A data mining system for linked
data. In: Workshop on Linked Data on the Web (LDOW2011) (2011)

29. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-
constrained random walks. Machine learning 81(1), 53–67 (2010)

30. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia – A Large-
scale, Multilingual Knowledge Base Extracted from Wikipedia. Semantic Web
Journal 6(2) (2013)

31. Lehmberg, O., Ritze, D., Meusel, R., Bizer, C.: A large public corpus of web tables
containing time and context metadata. In: Proceedings of the 25th International
Conference Companion on World Wide Web. pp. 75–76. International World Wide
Web Conferences Steering Committee (2016)

32. Lenat, D.B.: CYC: A large-scale investment in knowledge infrastructure. Commu-
nications of the ACM 38(11), 33–38 (1995)

33. Mahdisoltani, F., Biega, J., Suchanek, F.M.: Yago3: A knowledge base from mul-
tilingual wikipedias. In: CIDR (2013)

34. Melo, A., Paulheim, H.: Local and global feature selection for multilabel classifi-
cation with binary relevance. Artificial intelligence review pp. 1–28 (2017)

35. Melo, A., Paulheim, H.: Synthesizing knowledge graphs for link and type predic-
tion benchmarking. In: European Semantic Web Conference. pp. 136–151. Springer
(2017)

36. Melo, A., Paulheim, H., Völker, J.: Type prediction in rdf knowledge bases us-
ing hierarchical multilabel classification. In: Proceedings of the 6th International
Conference on Web Intelligence, Mining and Semantics. p. 14. ACM (2016)

37. Meusel, R., Petrovski, P., Bizer, C.: The webdatacommons microdata, rdfa and
microformat dataset series. In: International Semantic Web Conference. pp. 277–
292. Springer (2014)

38. Mihelčić, M., Antulov-Fantulin, N., Bošnjak, M., Šmuc, T.: Extending rapidminer
with recommender systems algorithms. In: RapidMiner Community Meeting and
Conference (RCOMM 2012) (2012)

39. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

40. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. pp. 3111–3119 (2013)

41. Miller, G.A.: WordNet: a lexical database for English. Communications of the
ACM 38(11), 39–41 (1995), http://dx.doi.org/10.1145/219717.219748

42. Molina, L.C., Belanche, L., Nebot, À.: Feature selection algorithms: A survey and
experimental evaluation. In: International Conference on Data Mining (ICDM).
pp. 306–313. IEEE (2002)

43. Muñoz, E., Hogan, A., Mileo, A.: Using linked data to mine rdf from wikipedia’s
tables. In: Proceedings of the 7th ACM international conference on Web search
and data mining. pp. 533–542. ACM (2014)

44. Neville, J., Jensen, D.: Iterative classification in relational data. In: Proc. AAAI-
2000 Workshop on Learning Statistical Models from Relational Data. pp. 13–20.
AAAI, Palo Alto, CA (2000), http://www.aaai.org/Library/Workshops/2000/

ws00-06-007.php
45. Nothman, J., Ringland, N., Radford, W., Murphy, T., Curran, J.R.: Learning mul-

tilingual named entity recognition from Wikipedia. Artificial Intelligence 194, 151–
175 (2013), http://dx.doi.org/10.1016/j.artint.2012.03.006

46. Paulheim, H.: Generating possible interpretations for statistics from linked open
data. In: Extended Semantic Web Conference. pp. 560–574. Springer (2012)

47. Paulheim, H.: Knowledge Graph Refinement: A Survey of Approaches and Evalu-
ation Methods. Semantic Web (2016)

48. Paulheim, H.: Data-driven joint debugging of the dbpedia mappings and ontology.
In: European Semantic Web Conference. pp. 404–418. Springer (2017)

49. Paulheim, H.: How much is a triple? – estimating the cost of knowledge graph
creation. In: ISWC Blue Sky Ideas (2018), to appear

50. Paulheim, H.: Make embeddings semantic again! In: ISWC Blue Sky Ideas (2018),
to appear

51. Paulheim, H., Bizer, C.: Type inference on noisy rdf data. In: International Se-
mantic Web Conference. pp. 510–525. Springer (2013)

52. Paulheim, H., Bizer, C.: Improving the quality of linked data using statistical
distributions. International Journal on Semantic Web and Information Systems
(IJSWIS) 10(2), 63–86 (2014)

53. Paulheim, H., Fürnkranz, J.: Unsupervised Generation of Data Mining Features
from Linked Open Data. In: International Conference on Web Intelligence, Mining,
and Semantics (WIMS’12) (2012)

54. Paulheim, H., Gangemi, A.: Serving DBpedia with DOLCE–More than Just
Adding a Cherry on Top. In: International Semantic Web Conference. LNCS, vol.
9366. Springer (2015)

55. Paulheim, H., Pan, J.Z.: Why the semantic web should become more imprecise
(2012)

56. Paulheim, H., Ponzetto, S.P.: Extending dbpedia with wikipedia list pages. NLP-
DBPEDIA ISWC 13 (2013)

57. Paulheim, H., Stuckenschmidt, H.: Fast approximate a-box consistency checking
using machine learning. In: International Semantic Web Conference. pp. 135–150.
Springer (2016)

58. Pellissier Tanon, T., Vrandečić, D., Schaffert, S., Steiner, T., Pintscher, L.: From
freebase to wikidata: The great migration. In: Proceedings of the 25th International
Conference on World Wide Web. pp. 1419–1428 (2016)

59. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook.
In: Recommender systems handbook, pp. 1–35. Springer (2011)

60. Rico, M., Mihindukulasooriya, N., Kontokostas, D., Paulheim, H., Hellmann, S.,
Gómez-Pérez, A.: Predicting incorrect mappings: A data-driven approach applied
to dbpedia (2018)

61. Ringler, D., Paulheim, H.: One knowledge graph to rule them all? analyzing the
differences between dbpedia, yago, wikidata & co. In: Joint German/Austrian Con-
ference on Artificial Intelligence (Künstliche Intelligenz). pp. 366–372. Springer
(2017)

62. Ristoski, P., Bizer, C., Paulheim, H.: Mining the web of linked data with rapid-
miner. Web Semantics: Science, Services and Agents on the World Wide Web 35,
142–151 (2015)

63. Ristoski, P., Menćıa, E.L., Paulheim, H.: A hybrid multi-strategy recommender
system using linked open data. In: Semantic Web Evaluation Challenge. pp. 150–
156. Springer (2014)

64. Ristoski, P., Paulheim, H.: Analyzing statistics with background knowledge from
linked open data. In: Workshop on Semantic Statistics (2013)

65. Ristoski, P., Paulheim, H.: A comparison of propositionalization strategies for cre-
ating features from linked open data. Linked Data for Knowledge Discovery 6
(2014)

66. Ristoski, P., Paulheim, H.: Feature selection in hierarchical feature spaces. In:
Discovery Science (2014)

67. Ristoski, P., Paulheim, H.: Visual analysis of statistical data on maps using linked
open data. In: International Semantic Web Conference. pp. 138–143. Springer
(2015)

68. Ristoski, P., Paulheim, H.: Rdf2vec: Rdf graph embeddings for data mining. In:
International Semantic Web Conference. pp. 498–514. Springer (2016)

69. Ristoski, P., Paulheim, H.: Semantic web in data mining and knowledge discovery:
A comprehensive survey. Web semantics: science, services and agents on the World
Wide Web 36, 1–22 (2016)

70. Ristoski, P., Rosati, J., Noia, T.D., Leone, R.D., Paulheim, H.: Rdf2vec: Rdf graph
embeddings and their applications. Semantic Web (2018)

71. Rosati, J., Ristoski, P., Di Noia, T., Leone, R.d., Paulheim, H.: Rdf graph embed-
dings for content-based recommender systems. In: CEUR workshop proceedings.
vol. 1673, pp. 23–30. RWTH (2016)

72. Sarjant, S., Legg, C., Robinson, M., Medelyan, O.: “All you can eat” ontology-
building: Feeding Wikipedia to Cyc. In: Proceedings of the 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent
Technology-Volume 01. pp. 341–348. IEEE Computer Society, Piscataway, NJ
(2009), http://dx.doi.org/10.1109/WI-IAT.2009.60

73. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: International Semantic Web Conference.
pp. 245–260. Springer (2014)

74. Seitner, J., Bizer, C., Eckert, K., Faralli, S., Meusel, R., Paulheim, H., Ponzetto,
S.P.: A large database of hypernymy relations extracted from the web. In: LREC
(2016)

75. Silla, Jr., C.N., Freitas, A.A.: A survey of hierarchical classification across different
application domains. Data Min. Knowl. Discov. 22(1-2), 31–72 (Jan 2011)

76. Thalhammer, A., Rettinger, A.: PageRank on Wikipedia: Towards General Impor-
tance Scores for Entities. In: The Semantic Web: ESWC 2016 Satellite Events, pp.
227–240. Springer International Publishing, Crete, Greece (2016)

77. Ting, K.M., Witten, I.H.: Issues in stacked generalization. Artificial Intelligence
Research 10(1) (1999)

78. Tonon, A., Felder, V., Difallah, D.E., Cudré-Mauroux, P.: Voldemortkg: Mapping
schema. org and web entities to linked open data. In: International Semantic Web
Conference. pp. 220–228. Springer (2016)

79. Vrandečić, D., Krötzsch, M.: Wikidata: a Free Collaborative Knowledge Base.
Communications of the ACM 57(10), 78–85 (2014)

80. Wienand, D., Paulheim, H.: Detecting incorrect numerical data in dbpedia. In:
European Semantic Web Conference. pp. 504–518. Springer (2014)

81. Zaveri, A., Kontokostas, D., Sherif, M.A., Bühmann, L., Morsey, M., Auer, S.,
Lehmann, J.: User-driven Quality Evaluation of DBpedia. In: 9th International
Conference on Semantic Systems (I-SEMANTICS ’13). pp. 97–104. ACM, New
York (2013), http://dx.doi.org/10.1145/2506182.2506195

82. Zhang, X., Yuan, Q., Zhao, S., Fan, W., Zheng, W., Wang, Z.: Multi-label classifica-
tion without the multi-label cost. In: Proceedings of the Tenth SIAM International
Conference on Data Mining (2010)

83. Zimmermann, A., Gravier, C., Subercaze, J., Cruzille, Q.: Nell2RDF: Read the
Web, and Turn it into RDF. In: Knowledge Discovery and Data Mining meets
Linked Open Data. CEUR Workshop Proceedings, vol. 992, pp. 2–8 (2013), http:
//ceur-ws.org/Vol-992/

