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Abstract. Ensembles of machine learning models have proven to im-
prove the performance of prediction tasks in various domains. The addi-
tional computational costs for the performance increase are usually high
since multiple models must be trained. Recently, snapshot ensembles [13]
gained attention as they provide a comparably cheap way of ensemble
learning for artificial neural networks (ANNs). We extend snapshot en-
sembles to the application of time series forecasting, which comprises
two essential steps. First, we show that determining reasonable selec-
tions for sequence lengths can be used to efficiently escape local minima.
Additionally, combining the forecasts of snapshot LSTMs with a stacking
approach greatly boosts the performance compared to the mean of the
forecasts as used in the original snapshot ensemble approach. We demon-
strate the effectiveness of the algorithm on five real-world datasets and
show that the forecasting performance of our approach is superior to
conservative ensemble architectures as well as a single, highly optimized
LSTM.

Keywords: Time Series, LSTM, ARIMA, Ensembles, Stacking, Meta-
Learning

1 Introduction

Estimating the future development of continuous data generated by one or more
signals has been an ongoing research field of interest for various applications. For
example, automated financial forecasting is vital in today’s markets. Further,
sensor generated data driven by the Internet of Things requires robust methods
for reliable forecasts of temporal data. Long Short-Term Memory (LSTM) [10]
has proven to be an effective method for a variety of sequence learning tasks
such as time series forecasting. Relying on a single LSTM, however, is prone
to instability due to the dynamic behavior of time series data. Additionally, the
optimization of LSTM parameters is a hard problem that requires time intensive
fine tuning.

Another difficulty when dealing with time series problems lies in the slicing of
the data, i.e., how many past values should be considered for training the model
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and generating forecasts. It is common practice to determine the top periodicity
using a fast fourier transformation and power spectra, and train one or more
models based on that periodicity. This approach is prone to incompleteness be-
cause information may be encoded across patterns of varying periodicity in the
series. It is also a time consuming task as identifying the optimal sequence length
is usually part of a manual preprocessing step. For these reasons, it is a chal-
lenge to create machine learning frameworks that are able to produce automated
forecasts for a given series. Even a greatly tuned model fails to find important
relationships in time series data if the selected time lags can not represent these
patterns. Therefore, a framework that can incorporate multiple sequence lengths
is desirable.

We introduce a meta learning approach based on snapshot ensembles that
provides superior and robust forecast estimates across different datasets. In con-
trast to the original idea of snapshot ensembles, we do not adapt the parameters
of the LSTM but leave them unchanged. Instead, we use different slices of the
training data in order to escape local minima and to detect time-dependent pat-
terns. Our proposed approach enables the automated generation of time series
forecasts for a given series yi, ..., Yn, including preprocessing steps like data stan-
dardization, periodicity detection, data slicing and splitting. Hence, the amount
of required manual work is greatly reduced by the proposed framework.

By sequentially training LSTMs with periodicities of decreasing strength,
our algorithm is able to learn the different patterns of the respective seasonali-
ties. This allows for higher generalization of the final model, thereby providing
estimates that are robust with respect to the underlying data generation process.

The rest of this paper is structured as follows. Section 2 provides an overview
of existing approaches to time series forecasting and their application within en-
semble frameworks. In Section 3, we introduce the concept of snapshot ensembles
and explain our approach for their extension to the task of time series forecast-
ing. We show that our method outperforms previous approaches on five datasets
in Section 4. Eventually, we conclude and give an outlook on future research
directions in Section 5.

2 Related Work

Time series forecasting is a highly common data modeling problem since tempo-
ral data is generated in many different contexts. Classical forecasting approaches
are based on autoregressive models such as ARIMA, ARIMAX, and Vector Au-
toregression (VAR) [7] [20]. Here, a forecast estimate is dependent on a linear
combination of the past values and errors. Autoregressive models work well if
the assumption of stationarity is true and the series is generated by a linear
process [1]. On the other hand, these hard assumptions limit the effectiveness of
autoregressive models if one deals with non linear series, as it is the case with
the majority of practical time series problems.

LSTM, a particular variant of artificial recurrent neural networks (RNN),
overcomes these shortcomings as it makes no assumptions about the prior dis-
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tribution of the data. One can think of RNNs as regular feed-forward networks
with loops in them. This enables RNNs to model data with interdependencies
such as autoregression. It has been shown that artificial neural networks with
one hidden layer can, in theory, approximate a continuous function arbitrarily
well [11]. As the RNN gets deeper, vanishing or exploding gradients often lead to
poor model performance [4] [18]. LSTMs solve this problem with a gating mech-
anism that controls the information flow in the neurons. LSTMs show superior
performance in a variety of sequence learning tasks such as machine translation
8] [21).

Since autoregressive models perform well for linear series and neural networks
for non linear data, there exist a number of hybrid approaches that make use of
these characteristics. In those cases, the data is first split into a linear and a non
linear component and each one is modeled independently. The individual results
are then combined additively to determine the final estimate [2] [3] [22] [24].

The sequential nature of LSTMs has led to them being studied in the context
of time series forecasting intensively. [6] [15] [17] describe applications of LSTMs
for forecasting tasks. [1] [14] propose frameworks of LSTM ensembles with in-
dependently trained models. Finally, snapshot ensembles constitute a way to
construct an ensemble of dependent ANNs at comparably low computational
costs. A more detailed description is given in Sec. 3.1. We extend this method
to recurrent neural networks and sequential problems.

Time series analysis has also been investigated in the framework of convolu-
tional neural networks (CNNs). [30] use an architecture inspired by the recent
success of WaveNet for audio generation [31] which achieves competitive fore-
casting performance with relatively little training data available. A probabilistic
approach that combines both RNNs and CNNs in a single framework is given in
[32].

Finding periodicities in time series data is a key part in the preprocessing of
time series data and proposes a major challenge for the automation of machine
generated forecasts. [5] propose a variation of the approximate string matching
problem for automated periodicity detection. [26] develop strategies on diversity
generation and build ensembles of the resulting models. In [27], a number of
heterogeneous models are arbitrated by a meta learner. [29] apply Fourier trans-
formations to the original data for feature generation and use a feed forward
neural network for the modeling part based on these features. [28] shift CNN
training entirely to the Fourier domain, thereby, achieve a significant speedup
with practically no loss of effectiveness. Another approach that exploits fourier
transformations is given in [19]. We will use a similar methodology in the course
of this paper.

3 Time Series Forecasting and Snapshot Ensembles

Time series data is subject to a number of properties due to interdependencies
across observations:
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1. Autoregression. In contrast to a machine learning setup where observations
are independent from one another, sequence learning tasks are characterized
by dependencies between observations. This has effects on data sampling and
model evaluation as drawing completely random subsamples is not possible.
Hence, a suitable sample strategy is indispensable when modeling temporal
data.

2. Structural patterns and changes. Due to trend and seasonality effects, the
behavior of a time series is subject to repetition and change at the same time.
While similar patters may repeat over time, the frequency and intensity of
those are usually not constant. This is one reason why ensemble methods
are a powerful tool for time series data as each of the snapshot models
incorporates information of different behavior.

3.1 Introduction to Snapshot Ensembles

Snapshot Ensembles propose a novel technique to obtain an ensemble of ANNs
at the same computational costs as fully training a single ANN. The central
idea is that instead of training a number of independent ANNs, only one ANN
must be optimized. In the process of optimization, the ANN converges to a
number of different local minima. Every time the ANN reaches a local minimum,
the model snapshot is stored along with its architecture and weights. The final
weights of a snapshot serve as the weight initialization of the succeeding snapshot
LSTM. Finally, each snapshot provides a prediction estimate and the ensemble
predictor is calculated as the mean of the snapshot estimates. It was shown that
this combination yields advantageous performance compared to the single best
estimate [13].

3.2 Extending Snapshot Ensembles to Sequence Problems

Time series forecasting can be interpreted as a sequence learning problem. Given
an input sequence of scalars, the objective is to estimate the succeeding values
of the sequence. An important task is to determine how many past values should
be considered as the features under consideration, i.e., which slice dimension of
the series allows for good model generalization. By nature, time series data is
dynamic and subject to change over time, so an initial decision is not necessarily
a sustainable solution. Designing ensembles of LSTM networks allows us to in-
corporate multiple sequence lengths into our prediction model. In the following,
we explain how.

LSTMs with varying sequence lengths By architecture, LSTMs are only ca-
pable to process sequences of equal lengths per epoch, due to the required matrix
operations in the optimization process. In many applications, however, varying
sequence lengths are inevitable. One example is machine translation where the
length of an input sentence can be arbitrarily long [21]. Padding is usually used
to overcome that problem [12]. This implicitly means that, although two models
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trained with even slightly different sequence lengths have a large intersection
of training data, they learn different yet related patterns. This constitutes a
promising setting for ensemble learning.

Locating candidate sequence lengths In order to train a number of snapshot
LSTMs with different sequence lengths, the first step is to identify the right
choices of these. A naive approach is to select sequence lengths from a random
distribution. To get sequence lengths that can catch effects of seasonality, we
apply a fast fourier transformation (FFT) to the training data and estimate the
power spectra [23]. The motivation behind this is that the FFT is an efficient
method to extract the right periodicities from a given time series. This allows the
snapshots to encode different patterns, seasonalities, and other time-dependent
effects in the series.

Generating a snapshot ensemble of LSTMs with varying sequences
[13] conduct a variant of simulated annealing in order to adapt the learning rate
and escape from local minima. In this case, a snapshot is a further optimization
of its predecessor using the identical training data, which leads to a relatively
low level of diversity across the snapshots. We propose another strategy in order
to increase diversity: Instead of adapting the model parameters, we feed the
LSTM with different slices of the data. This is possible because the dimensions
of the training data must be identical within a single epoch but not for two
separate epochs. Given a set S = {s1, s2, ..., 8, } of different sequence lengths we
store in total n snapshots of the LSTM. After each snapshot based on s;, the
training process is continued with a different data slice through time according
to s;11. The final holdout estimates of the individual snapshots are commonly
combined by taking the mean of the base forecasts. This assumes that each
snapshot is equally important with respect to the combination of forecasts. In
order to allow for more flexibility, we extend the mean function by a meta learner.
Ridge Regression has proven to be an effective choice here [25]. The process of
the ensemble construction at training time is depicted in Fig. 1 for the example
case S = {14,21,28} and a forecasting horizon of 10. First, the training data
Y1y - Yn (75% of the total data) is split according to the most potent sequence
lengths provided by the FFT (in decreasing order of FFT significance). In our
experiments, we use the top 20 sequence lengths. Next, the first snapshot is
trained with the respective data slices based on the first sequence length. We
train each snapshot for five epochs and standardize the data by its z-transform
prior to training. The base LSTM learners’ architecture is set up of two LSTM
layers with 64 and 128 neurons as well as 20% dropout. Adam is used as the
optimizer with a learning rate of 0.001. The weight matrix of the first snapshot is
then updated based on the data slices for the second sequence length, and so on.
In total, training is done for 520 = 100 epochs. After all snapshots are trained,
a ridge regression meta model learns how to combine the individual forecasts
of the 20 snapshots. Analogously, at test time, all 20 base models provide their
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Fig. 1. LSTM Snapshot Training Framework

forecasts to the meta learner, which then combines them to the final estimate
for the 10 step ahead forecasts.

4 Experiments

We test the proposed methodology on five data sets of different kind. We train a
snapshot ensemble for each data set where we start with the strongest periodicity
according to the FFT. Subsequently, each LSTM snapshot is based on the next
strongest periodicity. In total, 20 snapshots are trained. An overview of the
datasets is given in Table 1 and Fig. 2. Furthermore, Fig. 3 displays the power
spectrum for the sunspots series. This example shows that there exist a number
of unequally well suited periodicities. Each of these contains different patters
which we aim to extract using snapshot ensembles. To show the effectiveness as
well as the efficiency of our approach, the performance of the snapshot ensemble
is measured against the following three baselines:

1. Independent LSTM ensemble. Instead of continuing the training process by
escaping from a local minimum, the LSTM is reinitialized randomly and
fed with the new data slices. Instead of n snapshots, we end up with n
LSTMs whose training process was completely independent of one another.
In contrast to this, a snapshot inherits its initial weights from its preceding
snapshot.

2. Single optimized LSTM. The best sequence length according to the FFT is
used for the optimization of a single LSTM over all epochs.

3. ARIMA with model selection based on the AIC.

Notably, the total number of epochs is identical for all the neural net approaches.
Due to different slices of the training data, the total runtime of the latter ap-
proach can slightly differ from the ensemble methods in either direction.
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4.1 Model Evaluation

We validate the performance of our approach on five different data sets listed in
Table 1. Fig. 2 illustrates the series on their original scale. Evidently, each of the
datasets has its very own characteristics and dynamics. While the daily birth
rates data set shows signs of weak stationarity, the sensor-generated household
power dataset depicts more chaotic behavior with random noises. The latter is
sampled by the minute. River flow, a monthly sampled time series, is clearly non
stationary as well. The series of daily maximum temperatures repeats similar
patterns over time as does the births data and shows clear signs of weak station-
arity. Somewhere in between those cases fits the monthly sunspots data which
shows seasonalities of varying strength and amplitude. Fig. 4 shows the root

Table 1. Datasets of the Experimental Analysis

Data Number of Observations
Births in Quebec [9] 5,113
Household Power Consumption [16] 50,000
Maximum Temperature in Melbourne! 3,650
Number of Sunspots® 2,820
Riverflow' 23,741

mean square error (RMSE) on the holdout set of each dataset and method. Be-
sides the performance of the stacked ensembles ("Snap Stack’: stacked snapshot
ensemble, *ClassEns Stack’: stacked ensemble of independently trained LSTMs),
metrics for mean ensemble forecasts (’Snap Mean’, 'ClassEns Mean’) and single
model forecasts (’Single opt.’) are shown. The key outcomes of the analysis are:

— Snapshot ensembles with Ridge Regression as a meta learner outperform
conservative ensembles as well as the single, optimized model in all cases.The
traditional ARIMA models show inferior forecasting accuracy.

— On average, the stacked snapshot ensemble performs 4.2 % better than the
next best baseline.

— The greatest performance gain obtained by the stacked ensemble is realized
for the sunspots data. Here, the stacked snapshot ensembles outperform the
next best method by 13.8%, while the performance win for the other four
datasets is in a significantly lower range between 1.0% and 3.4%. Looking at
the illustrated data in Fig. 2, this is an indication that our approach is par-
ticularly suitable for time series with seasonalities of varying intensity. Peaks
of different amplitudes are handled well by the stacked snapshot ensemble,
which a single model fails to do with a high degree of precision.

— Extending snapshot ensembles by the introduction of a meta learner leads
to a great boost in performance compared to the simple mean combiner.

! https://datamarket.com/data/list/?q=, accessed June 1, 2018



RMSE

RMSE

2
2
40
39
38
37

Stacked LSTM Snapshot Ensembles for Time Series Forecasting

Birth Rates
31,2 31,73
279 29,41
24,02 24,86
w
)
I I I I E
x
ARIMA Single opt.  Snap  Snap Stack ClassEns ClassEns
Mean Mean Stack
Approach
Riverflow
41,4
40,22 40,06 40,05
39,49 w
38,96 g
I I m
ARIMA Singleopt. Snap Snap Stack ClassEns ClassEns
Mean Mean Stack
Approach
Sunspots
80 72,4 70,35 69,02
60
w 38,27
2 a0
z
0
ARIMA  Single opt.
Mean
Approach

Household Power

13
1,25
1,25
1,19
12 1,18 1,18
115 1,13
e I
1,05
ARIMA  Single  Snap Snap  ClassEns
opt. Mean Stack Mean
Approach
Temperatures in Melbourne
53 5,22
52
51 504 5,01
4,94
5 ’ 4,89
49
48 I
4,7
ARIMA Single opt.  Snap Snap ClassEns
Mean Stack Mean
Approach
71,89

Mean

24,4

Snap  Snap Stack ClassEns ClassEns

Stack

Fig. 4. Model Performance

1,15

ClassEns
Stack

4,95

ClassEns
Stack



10 Sascha Krstanovic and Heiko Paulheim

— Actual
Single Opt.
s Snap Stack
—— Snap Mean
—— ClassEns Stack
—— ClassEns Mean

320

300

3
&

Number of Births (Daily)
2
3

240

220

Future Time Step

Fig. 5. Exemplary Forecast

— The ensemble forecasts are significantly different from the estimates of the
remaining models, based on the paired t-test for significance.

— The single optimized LSTM only shows comparative performance if the
structure of the dataset is approximately stationary over time, as in the
case of the maximum temperatures series. This supports our hypothesis that
snapshot ensembles are particularly suitable for cases where patterns are
spread across multiple sequence lengths.

— Reslicing the input data according to the FFT after each snapshot leads to
base learners with high diversity. This enables the meta learner to exploit
different knowledge that is encoded across the snapshots. As an example,
the ordered FFT sequence lengths for the birth rates dataset are as follows:
365, 183, 73, 61, 37, 91, 41, 30, 10, 52, 11, 26, 852, 28, 14, 568, 341, 16, 20,
465. This clearly shows how FFT extracts potent periodicities from the time
series as the yearly and monthly seasonalities are immediately detected.

An exemplary 10 step ahead forecast is shown in Fig. 5. Here, the first holdout
sequence of the birth rates series along with its model estimates is illustrated.
One can see the significant improvements that are attributed to the meta learner,
leading to the reduction in forecasting error.

The code for the experiments is available on GitHub? .

2 https://github.com /saschakrs/TS-SnapshotEnsemble, accessed June 1, 2018
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5 Future Work and Conclusion

Snapshot ensembles based on FFT sequence lengths are an efficient method to
extract diverse patterns from data. We have shown that they yield superior
forecasting performance in comparison to the standard optimization of a single
LSTM and an ensemble of fully independently trained LSTMs, without the need
for additional computational costs. It turned out that these results are stable
across different data sets, although the relative performance boost differs de-
pending on the underlying data structure. Our approach enables the automated
generation of robust time series forecasts without the assumption of a specified
data distribution. This makes the framework a valuable application for systems
that require the future estimation of one or more key performance indicators
that develop over time.

There is further potential regarding the design of the ensemble architecture:
Besides the configuration of the individual base learners, different combiner func-
tions might improve the overall performance for certain problems. In addition to
this, we found that five epochs per snapshot lead to good overall performance of
the ensemble, however, this parameter could be higher for very complex learning
tasks.

It is also possible to extend the ensemble by different model types. Integrat-
ing autoregressive models or state-space representations could increase model
diversity and thereby lead to a greater performance win by the combiner func-
tion.

Finally, LSTM snapshot ensembles are currently limited to univariate time
series. Evaluating their applicability to the multivariate case is another challenge
worth investigating. It would also be interesting to evaluate the applicability of
stacked snapshot ensembles to different sequence learning tasks such as machine
translation.
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