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and STLab, ISTC-CNR Rome, Italy
aldo.gangemi@lipn.univ-paris13.fr

Abstract. Large knowledge bases, such as DBpedia, are most often cre-
ated heuristically due to scalability issues. In the building process, both
random as well as systematic errors may occur. In this paper, we focus
on finding systematic errors, or anti-patterns, in DBpedia. We show that
by aligning the DBpedia ontology to the foundational ontology DOLCE-
Zero, and by combining reasoning and clustering of the reasoning results,
errors affecting millions of statements can be identified at a minimal
workload for the knowledge base designer.
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1 Introduction

For the creation of large-scale knowledge bases, like DBpedia [18], there is often
a trade off between coverage and precision. They cannot be curated manually,
but only created by applying heuristic methods. Since those heuristics are most
often not 100% exact, the resulting knowledge bases are not free of errors.

In this paper, we concentrate on DBpedia, which is a large-scale, cross domain
knowledge base created from Wikipedia. To that end, Wikipedia infoboxes are
mapped to a central ontology in a crowd-sourced process. Those mappings are
then used to extract the DBpedia knowledge base from Wikipedia dumps. In the
past years, DBpedia has become one of the central hubs of the Linked Open Data
(LOD) cloud [27], with many applications using DBpedia for various purposes.

Due to the importance of DBpedia both as a linking hub in the LOD cloud,
as well as a knowledge base for various applications, many works have been pro-
posed in the recent past which target the improvement of the data in DBpedia.
However, most of those approaches target at identifying individual errors, i.e.,
statements which are likely to be wrong. In contrast, in this paper, we aim at the
identification of systematic errors, such as shortcomings of the heuristics used,
or wrong mappings. Systematic errors are sets of individual errors following a
similar pattern and having a common root cause (e.g., a wrong mapping).



Since DBpedia version 3.9, released in 2013, mappings of the DBpedia on-
tology to DOLCE-Zero [9, 11], a subset of the modules of the formal ontology
DOLCE, are included in the DBpedia ontology. We exploit those mappings to
identify conflicting statements in DBpedia with the help of a reasoner, and use
clustering to extract common patterns in the justifications. We find that in many
cases, each cluster is related to a particular problem in the construction of the
DBpedia knowledge base. While DOLCE has been used for improving several
ontologies on the T-Box (i.e., terminological) level, this work is novel since it
does not solely aim at improving the T-Box, but also the construction of the
A-Box (assertional level) of a large-scale knowledge base.

The rest of this paper is structured as follows. In section 2, we review related
works both w.r.t. debugging knowledge bases such as DBpedia, as well as the use
of formal top level ontologies for improving such knowledge bases. We introduce
our approach in section 3. An evaluation is carried out in section 4 by examining
the results as well as quantifying the influence of DOLCE-Zero, and by analyzing
the largest clusters identified and a sample from the long tail of non-clustered
statements. We show that both views lead to the identification of a number of
issues in DBpedia by inspecting only a very small fraction of selected statements.
We conclude with a summary and an outlook on future work.

2 Related Work

In this paper, we target the identification of systematic errors in the construction
of the large-scale knowledge base DBpedia. More specifically, we consider the
identification of wrong relation assertions between two individuals.

There is a larger body of work which targets at finding errors in web knowl-
edge bases such as DBpedia. The approaches vary both with respect to the
methods employed as well as to the targeted type of assertions – i.e., identifying
wrong type assertions, relational assertions, literals, etc.

Methods found in the literature range from statistical methods [24] and out-
lier detection [6, 22, 34] to using external methods, such as web search engines
[17]. In addition, crowdsourcing [1] and games with a purpose [32] have been
proposed as non-automatic means for identifying errors in knowledge bases.

In this paper, we propose the use of reasoning, in combination with further
processing of the reasoning results by means of data mining. The DBpedia on-
tology – as many schemas used for providing Linked Open Data – is not very
expressive, in particular with respect to the presence of disjointness axioms.
Thus, there is a natural limitation for reasoning-based approaches. Hence, such
approaches are often combined with ontology learning as a preprocessing step
to enrich the ontology at hand [16, 19, 31]. In contrast to those approaches, we
exploit the links to the foundational ontology DOLCE-Zero, and the high-level
disjointness axioms defined therein.

This approach has been applied in the past, starting from the creation of the
DOLCE foundational ontology in 2002 [10], and its use in the restructuring of
WordNet [9, 12]. Indeed, one of the main goals of upper level and foundational



ontologies, jointly with meaning negotiation among ontology designers, and har-
monization of ontologies, is that of “cleaning” a schema or a knowledge base by
inducing inferences (which can produce inconsistencies, or not) due to the axioms
defined on the classes and properties that are used as alignment targets of the
knowledge base schema. Examples include: [26], which describes the detection of
thousands of incoherences in a large collection of medical ontologies; [7], which
uses a foundational ontology to detect incoherences in anti-money-laundering
rules, as well as in suspicious financial transactions; [20], which uses founda-
tional axioms to integrate and cleanup alternative service ontologies; [8], which
also describes the detection of incoherences emerging from the formalization of
a collection of thesauri and classification schemes in the fishery domain.

To our knowledge, foundational ontologies have never been used to detect
inconsistencies in very large knowledge bases at the scale of millions of individ-
uals and facts, although using this approach was actually suggested pretty soon
[15]. More recently, an attempt [29] has been made in using a lightweight (non-
foundational) upper ontology (UMBEL) to populate DBpedia 3.7 with disjoint-
ness axioms, and derive inconsistencies. However, only 55,829 inconsistencies
are detected, from 5 logical-level types, with many of them due to a multi-
hierarchical categorization of certain buildings in that version of DBpedia. To
our knowledge, the latter is also the only approach that tries to target the iden-
tification of systematic errors, instead of individual ones.

3 Approach

We pursue a multi-stage process, as shown in Fig. 1. First, a reasoner is used to
list all property assignment statements that are inconsistent with the ontology,
along with their explanations. Then, those statements are clustered in order to
isolate patterns in the inconsistent statements. The patterns are then examined
manually to assess the inconsistencies identified.

While DBpedia contains type, relational, and literal assertions, we concen-
trate on identifying problems with relational assertions. The type assertions
in DBpedia are mostly correct, but incomplete [23], there exists a reasonable
amount of noise in the relational assertions. For example, Weaver et al. [33] de-
termine the fraction of wrong relational assertions in Wikipedia links to be 2.8%,
a number that can also serve as a rough estimate for DBpedia.

3.1 The Graph

The graph considered is constituted by the DBpedia 2014 ontology, mapping-
based types, and mapping-based properties datasets.3 The alignment to DOLCE-
Zero (see below) is included in the ontology dataset (T-Box: the alignments of
classes and properties), and in the mapping-based types dataset (A-Box: the

3 http://wiki.dbpedia.org/Downloads2014. The namespaces used are:
http://dbpedia.org/resource/, prefix=dbpedia,
http://dbpedia.org/ontology/, prefix=dbo
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Fig. 1. The overall process. Statements from the DBpedia RDF graph are examined
together with the subject’s and object’s types. The resulting inconsistent statements
are clustered by similar explanations, and an expert user examines the clusters.

materialized types). The schema mapping has been defined by a DOLCE-Zero
designer (one of the authors of this paper) at the time of the call for mappings
(issued in 2014 by DBpedia maintainers); the mapping is relative to the DBpedia
3.9 ontology and dataset. The alignment has been created by carefully inspecting
the T-Box axioms and a sample of the A-Box axioms for each class and property,
in order to compare the wiki-based ontology development to the actual data
models. The instance type materialization is based on the schema mapping.

For the 2014 release, the DBpedia maintainers have created the ontology
dataset and the materialized instance mappings of DOLCE-Zero with reference
to DBpedia 2014, with the mapping having been defined for the DBpedia 3.9
ontology. This results in a few issues. In particular, as new classes and properties
have been added to the DBpedia 2014 version, some domain and range restriction
axioms have changed, and some infobox mapping has changed as well, some of
the alignments to DOLCE-Zero need to be revised, while some alignments are
missing because of the new classes and properties. For this experiment, we have
not revised the alignments, because the instance type materialization was still
based on the 3.9 mapping in the DBpedia 2014 dataset.4

DOLCE-Zero consists of two OWL ontology modules derived from DOLCE
[9] and the D&S [11] ontologies. The original design was made in the S5 modal
logic [4] (DOLCE), and KIF [14] (D&S). DOLCE covers general distinctions con-
cerning physical and social objects, events, abstractions, attributes, dimensional
regions, as well as mereological (part), participation, inherence (attributive),
and localization relations. In other words, DOLCE covers some of the core on-
tology design patterns that are typically assumed in the majority of conceptual
schemata. D&S defines a vocabulary for roles, frames, concepts, and situations,
which help representing many domains (e.g., biomedicine, law, business, organi-
zations) that are often ambiguous in using words for expressing actual entities
vs. concepts describing various collections of entities.In other words, D&S com-
plements DOLCE with conceptual-level ontology design patterns.

The original DOLCE was hardly reusable on the Semantic Web, because of
idiosyncratic terminological choices, and the strong expressivity of many of its

4 Actually, our approach was capable of automatically discovering the places in which
changes in the DBpedia ontology lead to invalid alignments (cf. Section 4), and led
to fixes that will become part of the DBpedia 2015 version.



axioms (n-ary relations, possible world and temporal indexing of relationships,
non-trivial first-order co-reference of variables). Therefore, the DOLCE designers
decided soon to create a lighter version in OWL by relaxing n-ary relations,
removing possible world and temporal indexing, and ignoring the most complex
axioms. During the years, additional modules have been developed to cover e.g.
WordNet’s top level, as well as to link the light versions of DOLCE and D&S.
Eventually, two modules have emerged as mostly useful to work with LOD:

– an OWL module called DOLCE+DnS Ultralight (DUL),5 which contains a
simplification of the original DOLCE axioms, with some additional concepts
and relations, and the D&S vocabulary

– an upper level module, called DOLCE-Zero (D0)6 that simplifies some of
the distinctions in DUL, which has been created to optimize the alignment
of WordNet used by the T̀ıpalo method for automatic typing of Wikipedia
resources [13].

D0 is a small set of classes on top of DUL, which deal with ambiguity and com-
pleteness issues. Firstly, it introduces four “union classes” (d0#Characteristic,
d0#Eventuality, d0#Activity, and d0#Location) that generalize some dis-
joint classes from DUL that are sometimes considered too “picky”, e.g. qualities
vs. dimensional regions, events vs. situations, actions vs. tasks, space regions
vs. physical locations. In practice, those distinctions are seldom represented in
lightweight ontologies and natural language lexicons, and often originate debat-
able inconsistencies. Secondly, D0 introduces three top-level classes that have
never been clarified and eventually accepted in DOLCE: d0#CognitiveEntity,
d0#System, and d0#Topic. Those classes are needed in order to align existing on-
tologies. The combination of DBpedia Ontology and D0 is coherent in itself with
one exception: in DBpedia, the class dbo#Library is a case of metonymy, since
is a subclass of both Building and Organization. However, the alignments are
respectively to d0#PhysicalObject and to d0#SocialObject, which are disjoint
classes.

3.2 Identifying Conflicting Statements

For each relation r(s, o) that holds between a subject s and an object o, we
collect all direct types of the subject and the object, i.e., Ts = {T |T (s)}, To =
{T |T (o)}. Those statements – i.e., the relation as well as the type assertions
– are presented to a reasoner, together with the DBpedia and D0 ontologies.
Typically, a statement is detected as conflicted if the domain or range assignment
of r contains a class which is disjoint with a class in Ts or To, respectively. Fig. 2
illustrates such an inconsistency.

Once a reasoner detects such an inconsistency for a statement, it can also
deliver an explanation, i.e., the set of axioms that, together, are inconsistent.
In the example in Fig. 2, it comprises the original relation assertion, the type

5 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl, prefix=dul
6 http://www.ontologydesignpatterns.org/ont/dul/d0.owl, prefix=d0



Tim Berners-Lee Royal Society

Award

award

        range

Description

subclass of           

Social Agent
disjoint

with

DBpedia 
ontology

DBpedia 
instances

DOLCE
ontology

Organisation

is a

Social Person

equivalent class        

subclass of           

Fig. 2. Conflict detection example for the statement dbpedia#Tim Berners-Lee

dbo#award dbpedia#Royal Society

assertion for the object, the property’s range assertion, as well as all the subclass,
equivalence, and disjointness assertions depicted in the figure. It is important
to note that a detected inconsistency for a statement does not mean that the
statement as such is wrong. It is rather the case that one of the axioms comprising
the explanation (including the original statement) are wrong, which can also
apply to a type assertion or any axiom in the DBpedia or D0 ontology.

Using a reasoner to check each and every statement in a large-scale dataset
like DBpedia would lead to intractable runtimes. However, it is obvious that
for two pairs of statements r(s, o) and r(s′, o′), the results of an inconsistency
check are equivalent if Ts = Ts′ and To = To′ . Hence, we can cache the reasoning
results for a characteristic signature 〈r, Ts, To〉 and only invoke the reasoner for
statements with a previously unseen characteristic signature.

3.3 Clustering Conflicts

The result of the previous step is a set of conflicting statements, where each
statement has a set of axioms that lead to the conflict. In order to group similar
conflicts, we use clustering and assign statements with similar axiom sets to the
same cluster.

For determining the clusters, we represent each conflicting statement as a
binary feature vector, where the features are the ontology axioms. As a distance
function, we use the Manhattan distance between the feature vectors, i.e., the
number of axioms by which the two explanations differ:

d(A1, A2) = |A1 ∪A2 −A1 ∩A2|, (1)

where A1 and A2 are the axiom sets that lead to the inconsistency of two state-
ments. Manhattan distance was chosen for simple computation and interpretabil-
ity (i.e., a distance of n means that two explanations differ in n axioms).

As a clustering algorithm, we use DBSCAN [5]. That clustering algorithm
forms clusters based on density, given two parameters ε and M. A cluster is
formed around an instance if at least M instances are within a distance of ε
of that instance. In our example, this means that clusters contain conflicting



statements whose explanations do not differ by more than ε axioms. DBSCAN
was used since (a) it does not require specifying the number of clusters upfront,
(b) its efficiency, and (c) its capacity of isolating noise.

Instances which are not assigned to any cluster are marked as noise. These
are conflicting statements whose explanation is not similar to that of at least
M other statements. Hence, choosing the parameter M gives us control on the
minimum frequency of a particular conflict to regard it as a systematic error.

4 Evaluation

We have evaluated our approach on DBpedia 2014, using the mapping-based
types and properties datasets. We have run the conflicting statement detection
and clustering once with, once without the D0 ontology. For reasoning, we used
the HermiT reasoner [28], for clustering, we used a slightly modified version of
the DBSCAN implementation in RapidMiner7,8.

4.1 Basic Results

Without D0, a total of 97,749 statements (0.65% of all statements) was found
to be inconsistent, with 630 different axioms involved in the corresponding ex-
planations. With D0, this number increases to 3,654,255 statements (24.36% of
all statements), with 1,467 axioms involved in the corresponding explanations.

As discussed above, we use caching of reasoner results. In total, the reasoner
had to examine only 34,554 out of 15,001,543 statements, i.e., 0.03%. Computing
the consistency and explanation of a statement took 2.6 seconds on average,
which totals to 25h (i.e., without caching, the whole consistency checking step
would take more than one year). The clustering took around five minutes. All
computations were performed on a standard laptop.

We ran DBSCAN with ε = 2 and ε = 4, and used 5,10,25,50, and 100 as
values for M . The cluster sizes and number of noise instances are depicted in
Table 1. Although the absolute number of clusters when using D0 is only four
times larger, while the total number of detected inconsistent statements is 37
times larger. The reason is that some of the clusters found when using D0 are
quite large, i.e., the inconsistencies found affect a large number of statements. In
fact, the largest 16 clusters are clusters that use D0 axioms in their explanations.

7 http://www.rapidminer.com
8 The modification was made in order to make DBSCAN incorporate instance

weights when counting instances. This allows us to reduce the dataset to only
one instance per conflicting set of axioms, and set the number of statements ex-
posing that conflict as the instance weight. With this modification, the dataset
size to be processed in RapidMiner could be reduced by a factor larger than
1,000. The modification is contained in the Mannheim RapidMiner Toolbox Ex-
tension, available at https://marketplace.rapidminer.com/UpdateServer/faces/
product_details.xhtml?productId=rmx_maratool



Table 1. Number of clusters and noise instances with and without D0 for DBSCAN
different parameter settings of ε and M . #C denotes the number of clusters, �C denotes
the average cluster size, and #N denotes the number of noise instances.

without D0 with D0
ε M #C �C #N #C �C #N

2
5

218 447 355 915 3,992 1,835
4 182 536 264 745 4,903 1,390

2
10

180 540 614 681 5,361 3,392
4 151 644 474 565 6,463 2,574

2
25

129 747 1,406 457 7,981 6,746
4 108 894 1,160 380 9,602 5,454

2
50

98 972 2,529 338 10,779 10,958
4 84 1,139 2,075 288 12,658 8,709

2
100

68 1,370 4,623 254 14,321 16,797
4 62 1,519 3,570 219 16,624 13,537

The values in the table also demonstrate the value of clustering: even if
inspecting only a few hundred clusters (each presented as an example statement
and the corresponding explanation), a user can fix several million statements in
DBpedia.

At a first manual inspection, we found out that the clusters with the larger ε
value of 4 still looked rather coherent, i.e., the explanations are reasonably similar
to group them together. Moreover, to keep the number of clusters tractable, we
focus on the configuration with ε = 4 and M = 100. Fig. 3 shows the distribution
of clusters with this configuration.

4.2 Major Sources of Inconsistencies

Table 2 depicts the top 10 disjointness axioms, asserted classes, and asserted
properties which occur in the inconsistencies identified by our approach. Again,
the trend is confirmed that the absolute number of problems discovered when
exploiting D0 is by several orders of magnitude larger than when relying only
on the DBpedia ontology.

Furthermore, we can observe that some of the major problem sources, such as
the modeling of species, career stations, and musical artists/bands (see below),
are not captured without D0. This shows that in those areas, the formalization
depth of the DBpedia ontology is rather low.

When using D0, seven out of the ten top 10 disjointness assertions are from
the D0 ontology, while only three come from the DBpedia ontology. The funda-
mental distinction between social and physical objects is responsible for by far
most of the inconsistencies detected.

It is further noteworthy that even for the disjointness axioms asserted in the
DBpedia ontology, the number of conflicts detected when using D0 are higher
in absolute numbers. For example, the disjointness between dbo#Person and
dbo#Event is involved in over 10 times more inconsistencies when using D0. This
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Fig. 3. Distribution of clusters and their sizes at ε = 4 and M = 100 (note that the
y axis uses a logarithmic scale). Black bars denote clusters of explanations using D0,
grey bars represent clusters of explanations not using D0.

is due to the fact that other assertions within D0, such as inverse properties, are
also exploited by the reasoner.

4.3 Evaluation of the Largest Clusters

The 40 largest clusters cover 3,497,068 inconsistent triples, corresponding to
about 96% of all inconsistencies. 36 clusters use axioms from D0, i.e., only four
would be found when considering the DBpedia ontology alone. We report here a
classification of the 40 top clusters, according to the origin of the inconsistency,
and the way(s) to fix it. Each category reveals an anti-pattern, i.e. a modeling
solution used systematically, which produces unintended consequences.

Firstly, all the clusters contain an inconsistency anti-pattern: at least one
domain or range restriction for a property is disjoint with at least one of the
types declared for the subject or the object of an instance of that property.
Formally, assuming the domain EA of explanation axioms, the domain IA ⊂ EA
of inconsistent A-Box axioms, the subsets EAa1,...,an, EAai ⊂ EA of explanation
axioms for each inconsistent A-Box axiom ai ∈ IA, with ρ being the object
property from ai, φ and ψ being domain and range classes for ρ, and χ, ξ being
classes used as types of the individuals from ai, the following description logic
schema and data axiom templates are present in each cluster:

ρ v φ× ψ (2)

φ \ χ t ψ \ ξ (3)

ρ(x, y) ∧ (χ(x) t ξ(y)) (4)

Secondly, specific anti-patterns emerge from the analysis of the systematic
errors for the top 40 clusters:



Table 2. Top 10 disjointness axioms, classes, and properties involved in the inconsis-
tencies detected.

With DOLCE-Zero Without DOLCE-Zero
dul#PhysicalObject , dul#SocialObject 3,363,689 dbo#Agent , dbo#Place 60,120
dul#Event , dul#Object 174,917 dbo#Person , dbo#TimePeriod 31,330
dbo#Event , dbo#Person 65,649 dbo#Event , dbo#Person 4,443
dbo#Agent , dbo#Place 62,250 dbo#MeanOfTransp. , dbo#Person 1,521
dul#InformationObject , dul#SocialAgent 51,022 dbo#Building , dbo#Person 245
dbo#Person , dbo#TimePeriod 31,323 dbo#Activity , dbo#Person 34
dul#Abstract , dul#Object 27,663 dbo#Person , dbo#Plant 31
dul#InformationObject , dul#Situation 26,693 dbo#Person , dbo#Tower 14
dul#Situation , dul#SocialAgent 20,594 dbo#Mountain , dbo#Person 9
dul#Concept , dul#SocialAgent 12,498 dbo#Person , dbo#UnitOfWork 1
dbo#Species 1,273,521 dbo#TimePeriod 31,330
dbo#Person 1,182,729 dbo#Agent 28,827
dbo#CareerStation 621,575 dbo#Place 17,555
dbo#MusicalArtist 131,810 Wikidata#Q532 9,539
dbo#Event 124,757 dbo#Event 4,295
dbo#Organisation 63,725 dbo#Organisation 1,832
dbo#Band 53,448 dbo#Astronaut 1,488
dbo#Agent 36,472 dbo#Company 1,366
dbo#TelevisionShow 31,607 dbo#Region 640
dbo#TimePeriod 31,330 dbo#Broadcaster 263
dbo#team 1,520,216 dbo#team 39,065
dbo#family 335,398 dbo#birthPlace 10,285
dbo#order 278,229 dbo#district 7,167
dbo#currentMember 260,325 dbo#owner 4,569
dbo#kingdom 244,427 dbo#leaderName 3,414
dbo#phylum 200,431 dbo#province 3,267
dbo#genus 175,478 dbo#deathPlace 2,272
dbo#associatedMusicalArtist 97,243 dbo#location 1,766
dbo#battle 96,112 dbo#recordedIn 1,728
dbo#class 44,434 dbo#locationCity 1,612

Overcommitment (19) A conflict arises between the schema emerging from
data, and the schema from the ontology. In these cases, the ontology pro-
vides a typically reasonable intuition on how a certain property should be
used, e.g., dbo#team is designed as a relation between agents and sports
teams, but is often used in ways that conflicts arise with the basic intuition.
For example dbo#team can be used as a relation between events and teams
participating in that event. Since dul#Agent is disjoint with dul#Event, in-
consistencies are detected. The restriction on the domain of dbo#team results
therefore as an overcommitment : the interpretation of a property universe
is too specific compared to actual usage. Other examples of overcommit-
ment include instances for the properties dbo#associatedMusicalArtist,
dbo#musicalBand, dbo#network, dbo#militaryBranch, etc.

Metonymy (11) A conflict arises between two disjoint – but related – inter-
pretations of a same concept. An example appears with dbo#family, used in
triples expressing relations between species. dbo#family has been aligned to
the property dul#specializes, holding for instances of dul#Concept, but
the class dbo#Species has been aligned to dul#Organism, because species
in DBpedia include species as well as individual exemplars of a species (for
example, famous race horses), i.e. dbo#Species is used metonymically in
data. Since dul#Concept is disjoint with dul#Organism, inconsistencies are



detected. The metonymy anti-pattern is difficult to resolve, because it is due
to ambiguities that seem widespread in human language. Metonymy seems
related to human propensity for an economy of means: an interesting cog-
nitive experiment [25] proves the communicative function of ambiguity (cf.
also [21] for a discussion). D0 tries to accommodate this “power of ambigu-
ity” (cf. Section 3) to a certain extent, but relaxing all distinctions would
prevent inconsistency checking in general. D0 relaxation has been limited to
well known cases of metonymy, and the concept vs. organism metonymy for
natural classifications was not considered.9

Misalignment (5) A conflict arises because a property (or a class) has been
aligned to a wrong D0 entity, which causes inconsistencies in data clas-
sification. For example, the property dbo#commander has been aligned to
dul#coparticipatesWith, but its usage in data is actually a case of dul#has-
Participant. dul#coparticipatesWith holds for instances of dul#Object
only, but data include a 98% usage between dul#Event and dul#Object,
and only 2% between dul#Object, therefore intended usage leans clearly
towards the participation pattern.
Since the domain of dul#coparticipatesWith is dul#Object, and that of
dul#hasParticipant is dul#Event (with dul#Object owl#disjointWith

dul#Event), inconsistencies are detected. This anti-pattern suggests that
DBpedia ontology choices proposed by the crowd, or by infobox reengineer-
ing, should also be made based on the actual resulting usage in data.

Version branching (3) A conflict arises between an alignment defined on a
version, and a newer version. In these cases, the alignment provided for an
older version, may become incoherent in case of a non-conservative change
of the ontology in the newer version, e.g. dbo#team used to hold between ca-
reer stations (professional situations of e.g. an athlete) and teams in DBpedia
3.9 ontology, but in DBpedia 2014 it holds between agents and sports teams.
Since dul#Situation (aligning dbo#CareerStation), and dul#Person (align-
ing dbo#Athlete) are disjoint, inconsistencies are detected. This anti-pattern
suggests that the design of new versions of DBpedia ontology should update
the alignments to any change that has been made in the new version. Since
this is an interaction problem, our clustering-based approach seems particu-
larly appropriate to scale down the time needed to check all the interactions
between the proposed changes in infobox reengineering, crowd modeling, and
alignments.

Mistyping (1) A conflict arises between a type φ declared for some argu-
ment (subject or object) of an object property, and an expected type ψ
expected for the universe of that property, when φ \ψ. This is typically due
to systematic mistyping of individuals, and is not very frequent; an exam-
ple is dbpedia#Alfonso XII of Spain dbo#birthPlace dbpedia#Madrid,
where dbpedia#Madrid is erroneously typed as dbo#Agent. Since dbo#Agent

9 D0 was from WordNet requirements [13], and a new axiom – such as dbo#Species

v dul#Concept t dul#Organism – would be justified only if there is a substantial
amount of individual exemplars (actual organisms) typed as species in DBpedia.



Table 3. Amount of clusters and inconsistencies found for each anti-pattern in the 40
top clusters, and the expected fix to resolve them.

anti-pattern D0? #clusters #inco % fix type
Overcommitment 16 yes, 3 no 19 587962 .168 Schema restriction axioms

Metonymy yes 11 1277977 .365 Schema or data refactoring
Misalignment yes 5 133663 .038 Alignment tuning

Version branching yes 3 1477296 .422 Alignment tuning, workflow change
Mistyping no 1 10285 .003 Entity typing

Wrong taxonomy yes 1 9885 .003 Schema taxonomical axioms

is disjoint with dbo#Place, which is expected in the range of dbo#birthPlace,
inconsistencies are detected. Places being typed as agents occasionally occur
in DBpedia, with dbpedia#Korea and dbpedia#New Brunswick being other
prominent examples

Wrong taxonomy (1) A conflict arises between a property or class restriction
φ, and another restriction from a property or class ψ, where φ ≡ ψ. For exam-
ple, the inconsistency in triples like dbpedia#2002%E2%80%9303 Plymouth

Argyle F.C. season dbo#team dbpedia#Plymouth Argyle F.C. is due to
the fact that the property dbo#team is owl#equivalentProperty dbo#club,
but a specific domain is only stated for dbo#club (i.e. dbo#Athlete), while
dbo#team is used in triples with subject of type dbo#SportsSeason, which
is aligned to dul#Situation t dul#TimeInterval, which are both disjoint
with dbo#Athlete.

Concerning possible fixes for the inconsistencies, solution patterns apply ho-
mogeneously for each of the anti-patterns. In particular, Overcommitment re-
quires refactoring at the property restriction level, and need non-trivial design
choices; Metonymy requires refactoring of both the ontology and the data, in
order to partition the extension of a metonymical class or property; Misalign-
ment requires tuning the alignments; Version branching requires tuning of the
resulting misalignments, but in general a change in the ontology design work-
flow; Mistyping requires refactoring at the entity typing level; and finally, Wrong
taxonomy needs to be solved at the schema level.

As a summary, Table 3 shows the amount of clusters and inconsistencies
found for each anti-pattern, and the expected fix to resolve them.10

4.4 A Look at the Long Tail

In addition to the analysis of the top clusters, we also looked at the “long tail”,
i.e., the infrequent sources of inconsistencies which DBSCAN assigns to the Noise
cluster. Out of those statements, we drew a random sample of 100 statements,
and evaluated them by hand. From those 100 statements, 64 were actually erro-
neous, 30 were false negatives (i.e., statements which are actually correct), and
the remaining six were unclear or questionable. The main sources for the 64
errors are as follows:
10 A detailed list of findings and proposed solutions is available at http://dws.

informatik.uni-mannheim.de/en/research/dbpedia+dolce/



Link in longer text (23) If the value of an infobox key-value pair is a complex
expression containing several links, all of them are extracted into a relational
statement with the corresponding subject and predicate. However, this does
not always make sense. One example is the statement dbpedia#Cosmo Cramer

dbo#occupation dbpedia#Bagel, which is extracted from the correspond-
ing value Bagel shop worker, with Bagel linked to the corresponding Wikipedia
page.

Wrong link (9) These are simply wrong links in the Wikipedia infobox. Fol-
lowing those links does not make sense to a human visitor of Wikipedia, since
the link is completely wrong. One example is the statement dbpedia#Stone
(band) associatedMusicArtist dbpedia#Dementia, where the object de-
notes the disease dementia, not the artist of the same name.

Redirect (7) Redirects are resolved when building DBpedia. This can result in
nonsensical statements. One typical example is the statement dbpedia#Ben
Casey company dbpedia#Bing Crosby. Here, the original infobox value is
Bing Crosby Productions, which would be the correct object for the state-
ment. However, the production company has no Wikipedia page on its own,
but the object is a redirect to the person Bing Crosby, which leads to the
error.

Link/anchor text mismatch (6) This is a special case of wrong links – here,
the anchor link would actually suggest a different link target. In contrast to
wrong links as stated above, following the link in Wikipedia could actually
make sense to a Wikipedia user, since there is related information on the web-
site. One example is the statement dbpedia#Deutschland sucht den Super-

star judge dbpedia#MIA., where the judge of the TV show is the singer
of the band MIA., not the band as such. Nevertheless, the page about the
band contains information about the singer.

Metonymy (4) These are a special case of link/anchor mismatches, where the
linked resource and the object which was actually meant share their surface
form. One example is the statement dbpedia#Human Nature (band) genre

dbpedia#Motown, where the object denotes the record label Motown. The
term Motown, however, is often used as a genre name for the artists signed
by the label.

Anchor link (4) When building DBpedia, URI fragments are removed from
the link. However, they are used in Wikipedia to point to certain sections on
a page, which, in total, is on a different, but related topic. Thus, removing the
fragment can sometimes lead to wrong statements in DBpedia. One example
is the statement dbpedia#Pierre Langlais battle dbpedia#First Army

(France), where the original link had a fragment pointing to the section on
the page describing the actual battle.

Multiple Infoboxes (2) If a page contains multiple infoboxes, those can some-
times lead to wrong statements. One example observed is the Wikipedia page
Snooker World Rankings 1978/1979, which contains infoboxes about indi-
vidual players.

Unknown (9) In nine out of 64 cases, the authors of this paper could not find
the reason for the error to come into existence.



It is noteworthy that in the long tail, i.e., the noise cluster, we could observe
only those kinds of errors which are not specific to a certain class or property, but
uniformly distributed across DBpedia classes and properties. This shows that the
approach actually separates class-specific and class-independent problems, and
assigns the latter to a separate cluster.

Furthermore, the analysis of the long tail has revealed four major sources of
errors in DBpedia, which can be easily identified during the extraction phase
and should obtain further attention in the future: links in longer texts, redirects,
anchor links, and pages with multiple infoboxes. Given that the noise cluster
contains 13,537 instances, these four sources account for an estimate of at least
4,800 wrong statements in total11. A possible treatment strategy could quar-
antine statements which have one of those characteristics, and treat them with
special care, e.g., check them with a reasoner and/or statistical methods such as
SDValidate [24].

5 Conclusion and Outlook

In this paper, we have shown how mappings to the foundational ontology DOLCE-
Zero, which have been introduced in DBpedia from version 3.9 on, can be ex-
ploited for finding systematic errors in the construction of the DBpedia knowl-
edge base. The combination of reasoning and clustering of the reasoner’s ex-
planations helps minimizing the human expert’s workload: for the analysis of
problems affecting millions of statements, no more than 140 statements (40 rep-
resentative examples from the top clusters, plus 100 statements from the long
tail) – i.e., 0.001% of DBpedia – have been inspected manually.

As a result of the analysis, some of the mappings used for creating DBpedia,
as well as a number of assertions in the DBpedia ontology were directly changed.
For problems that were not trivial to resolve, bug reports were filed. Further-
more, we have identified some areas where the construction of DBpedia requires
additional attention, i.e., the extraction of relational statements from infobox
values containing more text than just a plain link or literal, the handling of redi-
rects, and the creation of relational statements from links containing an anchor
fragment. Furthermore, our approach has revealed some non-optimal mappings
between DBpedia and DOLCE-Zero, in particular where a) the DBpedia2014
ontology has used DBpedia 3.9 alignments, but the basic ontology had changed;
and b) some properties are applied ambiguously, which should lead either to a
change of the alignment, or of the DBpedia data or ontology.

So far, we have used a rather naive distance function for clustering the ex-
planations, i.e., Manhattan distance on binary axiom occurrence vectors. More
sophisticated similarity measures can be thought of, but are still subject to re-
search [2].

The approach presented in this paper can be transferred to other datasets
whose ontology is mapped to DOLCE-Zero. For the future, we are interested

11 Since not all problematic statements rooted in one of those four problems lead to an
inconsistency, we expect the number to be even higher.



in testing the approach also on other knowledge bases, such as YAGO [30] or
NELL [3], and compare the findings. From such experiments, we expect further
insights in the prevalent challenges for building large-scale knowledge bases.
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