
Type Inference on Noisy RDF Data

Heiko Paulheim and Christian Bizer

University of Mannheim, Germany
Research Group Data and Web Science

{heiko,chris}@informatik.uni-mannheim.de

Abstract. Type information is very valuable in knowledge bases. How-
ever, most large open knowledge bases are incomplete with respect to
type information, and, at the same time, contain noisy and incorrect
data. That makes classic type inference by reasoning difficult. In this pa-
per, we propose the heuristic link-based type inference mechanism SD-
Type, which can handle noisy and incorrect data. Instead of leveraging
T-box information from the schema, SDType takes the actual use of a
schema into account and thus is also robust to misused schema elements.

Keywords: Type Inference, Noisy Data, Link-based Classification

1 Introduction

Type information plays an important role in knowledge bases. Axioms stat-
ing that an instance is of a certain type are one of the atomic building blocks
of knowledge bases, stating, e.g., that Thomas Glavinic is an instance of type
Writer. Many useful queries to a knowledge base use type information, e.g., Find
all writers from Vienna, Is Night Work a novel or a short story?, etc.

In many knowledge bases, type information is incomplete for different rea-
sons. For instance, in a crowd-sourced knowledge base, the problem may be
simply that no one may have entered the type(s) for a certain instance. When
using open world semantics, as in many semantic web knowledge bases, this is
not a problem from a logic point of view – however, it drastically limits the
usefulness of the knowledge base.

Cross-domain knowledge bases, unlike closed-domain knowledge bases, most
often contain a large variety of types. Since it is often not feasible to manu-
ally assign types to all instances in a large knowledge base, automatic support
creating type information is desirable. Furthermore, since open, crowd-sourced
knowledge bases often contain noisy data, logic-based reasoning approaches are
likely to multiply errors.

In this paper, we show how type information can be generated heuristically
by exploiting other axioms in a knowledge base, in particular links between in-
stances. Unlike classic reasoning approaches, we use a weighted voting approach
taking many links into account, which avoids the propagation of errors from
single wrong axioms.

2

The rest of this paper is structured as follows. Section 2 motivates our work
by showing typical problems of reasoning on real-world datasets. Section 3 in-
troduces the SDType approach, which is evaluated in Sect. 4 in different ex-
perimental settings. In Sect. 5, we show how SDType can be applied to solve a
real-world problem, i.e., the completion of missing type information in DBpedia.
We conclude our paper with a review of related work in Sect. 6, and a summary
and an outlook on future work.

2 Problems with Type Inference on Real-world Datasets

A standard way to infer type information in the Semantic Web is the use of
reasoning, e.g., standard RDFS reasoning via entailment rules [20]. To illustrate
the problems that can occur with that approach, we have conducted an exper-
iment with DBpedia knowledge base [2]. We have used the following subset of
entailment rules:

– ?x a ?t1. ?t1 rdfs:subClassOf ?t2 entails ?x a ?t2

– ?x ?r ?y . ?r rdfs:domain ?t entails ?x a ?t

– ?y ?r ?x . ?r rdfs:range ?t entails ?x a ?t

We have applied these three rules to the instance dbpedia:Germany. These rules
in total induce 23 types for dbpedia:Germany, only three of which are correct.
The list of inferred types contains, among others, the types award, city, sports
team, mountain, stadium, record label, person, and military conflict.

A reasoner requires only one false statement to come to a wrong conclusion.
In the example of dbpedia:Germany, at most 20 wrong statements are enough
to make a reasoner infer 20 wrong types. However, there are more than 38,000
statements about dbpedia:Germany, i.e., an error rate of only 0.0005 is enough to
end up with such a completely nonsensical reasoning result. In other words: even
with a knowledge base that is 99.9% correct, an RDFS reasoner will not provide
meaningful results. However, a correctness of 99.9% is difficult, if not impossible,
to achieve with real-world datasets populated either (semi-)automatically, e.g.,
by information extraction from documents, or by the crowd.

In the example above, the class Mountain in the above is induced from a
single wrong statement among the 38,000 statements about dbpedia:Germany,
which is dbpedia:Mže dbpedia-owl:sourceMountain dbpedia:Germany. Like-
wise, the class MilitaryConflict is induced from a single wrong statement, i.e.,
dbpedia:XII Corps (United Kingdom) dbpedia-owl:battle dbpedia:Ger-

many.
These problems exist because traditional reasoning is only useful if a) both

the knowledge base and the schema do not contain any errors and b) the schema
is only used in ways foreseen by its creator [4]. Both assumptions are not real-
istic for large and open knowledge bases. This shows that, although reasoning
seems the straight forward approach to tackle the problem of completing missing
types, it is – at least in its standard form – not applicable for large, open knowl-
edge bases, since they are unlikely to have correct enough data for reasoning to

3

Table 1. Type distribution of the property dbpedia-owl:location in DBpedia

Type Subject (%) Object (%)

owl:Thing 100.0 88.6
dbpedia-owl:Place 69.8 87.6
dbpedia-owl:PopulatedPlace 0.0 84.7
dbpedia-owl:ArchitecturalStructure 50.7 0.0
dbpedia-owl:Settlement 0.0 50.6
dbpedia-owl:Building 34.0 0.0
dbpedia-owl:Organization 29.1 0.0
dbpedia-owl:City 0.0 24.2
...

produce meaningful results. What is required is an approach for inducing types
which is tolerant with respect to erroneous and noisy data.

3 Approach

An RDF knowledge base consists of an A-box, i.e., the definition of instances and
the relations that hold between them, and a T-box, i.e., a schema or ontology.
The SDType approach proposed in this paper exploits links between instances
to infer their types using weighted voting. Assuming that certain relations oc-
cur only with particular types, we can heuristically assume that an instance
should have certain types if it is connected to other instances through certain
relations. For example, from a statement like :x dbpedia-owl:location :y,
we may conclude with a certain confidence that :y is a place.

3.1 Link-based Type Inference

SDType uses links between resources as indicators for types, i.e., we propose a
link-based object classification approach [6]. The basic idea is to use each link
from and to a instance as an indicator for the resource’s type. For each link, we
use the statistical distribution (hence the name SDType) of types in the subject
and object position of the property for predicting the instance’s types.

For each property in a dataset, there is a characteristic distribution of types
for both the subject and the object. For example, the property dbpedia-owl:

location is used in 247,601 triples in DBpedia. Table 1 shows an excerpt of the
distribution for that property.1

Based on that example distribution, we can assign types with probabilities to
:x and :y when observing a triple like :x dbpedia-owl:location :y. Given the
distribution in table 1, we could assign P (?x a dbpedia-owl:Place) = 0.698,
P (?y a dbpedia-owl:Place) = 0.876, etc.

More formally, the basic building blocks of SDType are conditional properties
measuring how likely a type T is, given a resource with a certain property p,
expressed as P (T (r)|(∃p.>)(r)), where p may be an incoming or an outgoing

1 All DBpedia examples in this paper use version 3.8.

4

property. Furthermore, each property is assigned a certain weight wp, which
reflects its capability of predicting the type (see below). With those elements,
we can compute the confidence for a resource r having a type t as

conf (T (r)) :=
1

N
·

∑
all properties p of r

P (T (r)|(∃p.>)(r)), (1)

where N is the number of properties that connects a resource to another one.
By using the average probabilities of each type, we address the problem of faulty
links, since they do not contribute too much to the overall probability.

In the example with dbpedia:Germany used above, the class Mountain was
inferred due to one wrong statement out of 38,000. With the above definition,
that relation would only be weighted with 1

38,000 , thus, the type Mountain would
receive a comparably small overall confidence.

By looking at the actual distribution of types co-occurring with a property,
instead of the defined domains and ranges, properties which are “abused”, i.e.,
used differently than conceived by the schema creator, do not cause any problems
for SDType. As long as a property is used more or less consistently throughout
the knowledge base, the inferences will always be consistent as well. Single in-
consistent usages, just like single wrong statements, do not contribute too much
to the overall result. Furthermore, when looking at the actual usage of a schema,
the results can be more fine-grained than when using the schema only. For ex-
ample, on the MusicBrainz dataset2, foaf:name is always used as a property
of mo:MusicArtist. While RDFS entailment rules could not infer any specific
type from the foaf:name property, since it has no explicit domain defined.3

While using the actual distribution instead of defined domains and ranges
eliminates those problems, it can induce new ones when a dataset is heavily
skewed, i.e., the extensions of some classes are several orders of magnitude larger
than others. This is a problem in particular with general purpose properties, such
as rdfs:label or owl:sameAs, which are rather equally distributed in the overall
knowledge base. If that knowledge base is heavily skewed (e.g., a database about
cities and countries which contains 10,000 cities per country on average), and it
contains many of such general purpose properties, there is a danger of overrating
the more frequent types. Thus, we define a weight wp for each property (note that
p and p−1 are treated independently and are each assigned an individual weight),
which measures the deviation of that property from the apriori distribution of
all types:

wp :=
∑

all types t

(P (t)− P (t|∃p.>))
2

(2)

With those types, we can refine the above definition to

conf (T (r)) := ν ·
∑

all properties p of r

wp · P (T (r)|(∃p.>)(r)), (3)

2 http://dbtune.org/musicbrainz/
3 The defined domain of foaf:name is owl:Thing, see http://xmlns.com/foaf/spec/

5

resource predicate frequency

dbpedia:
Mannheim

dbpedia-owl:
federalState

1

dbpedia:
Mannheim

dbpedia-owl:
birthPlace-1

140

...

resource type

dbpedia:Mannheim dbpedia-owl:Place

dbpedia:Mannheim dbpedia-owl:Town

... ...

type apriori
probability

dbpedia-owl:Place 0.3337534

dbpedia-owl:Town 0.0523772

... ...

subject predicate object

dbpedia:Mannheim dbpedia-owl:
federalState

dbpedia:
Baden-Württemberg

dbpedia:
Steffi:Graf

dbpedia-owl:
birthPlace

dbpedia:Mannheim

...

resource type score

dbpedia:Heinsberg dbpedia-owl:
Place

0.8856929

dbpedia:Heinsberg dbpedia-owl:
PopulatedPlace

0.8110996

...

predicate weight

dpbedia-owl:
federalState

0.3337534

dbpedia-owl:
birthPlace-1

0.0523772

... ...

Input data1

predicate type probability

dbpedia-owl:
federalState

dbpedia-owl:
Place

1.0000000

dbpedia-owl:
birthPlace-1

dbpedia-owl:
Town

0.1760390

...

Compute basic distributions2

Compute weights and
conditional probabilities

3

Materialize missing types4

Fig. 1. Implementation of the type completion prototype as a sequence of table creation
operations

with the normalization factor ν defined as

ν =
1∑

all properties p of r wp
(4)

Intuitively, SDType implements a weighted voting approach, where for each
link, a vote consisting of a distribution of types is cast. The weights reflect the
discriminate power of the individual links’ properties.

Looking at these weights in DBpedia, for example, we can observe that the
maximum weight is given to properties that only appear with one type, such as
dbpedia-owl:maximumBoatLength, which is only used for dbpedia-owl:Canal.
On the other end of the spectrum, there are properties such as foaf:name, which,
in DBpedia, is used for persons, companies, cities, events, etc.

Consider, for example, the triples :x dbpedia-owl:location :y . :x foaf:

name "X", and an apriori probability of dbpedia-owl:Person and dbpedia-owl:

Place of 0.21 and 0.16, respectively. With those numbers and distributions such

6

as in table 1, definition (1) would yield a confidence score for :x a dbpedia-owl:

Person and :x a dbpedia-owl:Place of 0.14 and 0.60, respectively.4

When using weights, the numbers are different. In our example from DBpe-
dia, the obtained weights for dbpedia-owl:location and foaf:name are 0.77
and 0.17, hence, the overall confidence scores for :x a dbpedia-owl:Person

and :x a dbpedia-owl:Place in that example, using definition (3), are 0.05
and 0.78, respectively. This shows that the weights help reducing the influence
of general purpose properties and thus assigning more sensible scores to the types
that are found by SDType, and in the end help reducing wrong results coming
from skewed datasets.

In summary, we are capable of computing a score for each pair of a resource
and a type. Given a reasonable cutoff threshold, we can thus infer missing types
at arbitrary levels of quality – thresholds between 0.4 and 0.6 typically yield
statements at a precision between 0.95 and 0.99.

3.2 Implementation

SDType has been implemented based on a relational database, as shown in
Fig. 1. The input data consists of two tables, one containing all direct property
assertions between instances, the other containing all direct type assertions.

From these input files, basic statistics and aggregations are computed: the
number of each type of relation for all resources, and the the apriori probability
of all types, i.e., the percentage of instances that are of that type. Each of those
tables can be computed with one pass over the input tables or their join.

The basic statistic tables serve as intermediate results for computing the
weights and conditional probabilities used in the formulas above. Once again,
those weights and conditional probabilities can be computed with one pass over
the intermediate tables or their joins.

In a final step, new types can be materialized including the confidence scores.
This can be done for all instances, or implemented as a service, which types
an instance on demand. Since of each of the steps requires one pass over the
database, the overall complexity is linear in the number of statements in the
knowledge base.

4 Evaluation

To evaluate the validity of our approach, we use the existing type information in
two large datasets, i.e., DBpedia [2] and OpenCyc [9], as a gold standard,5 and
let SDType reproduce that information, allowing us to evaluate recall, precision,
and F-measure.
4 The actual numbers for DBpedia are: P (Person|foaf#name) = 0.273941,
P (Place|foaf#name) = 0.314562, P (Person|dbpedia#location) = 0.000236836,
P (Place|dbpedia#location) = 0.876949.

5 In the case of DBpedia, the dataset is rather a silver standard. However, it provides
the possibility of a larger-scale evaluation. A finer-grained evaluation with manual
validation of the results by an expert can be found in Sect. 5.

7

Table 2. Characteristics of the datasets used for evaluation

DBpedia OpenCyc

Number of instances 3,600,638 193,049
Number of distinct classes 359 119,941
Number of distinct properties 1775 18,526
Average depth of leaf classes in the class hierarchy 2.4 10.7

Average number of type statements per (typed) instance 5.6 59.9
Average number of instances per type 38,003.3 755.2
Average number of ingoing properties per instance 8.5 4.8
Average number of outgoing properties per instance 8.8 4.0

4.1 Datasets

DBpedia is generated automatically from Wikipedia infoboxes, and has a large
coverage, at the price of reduced precision, e.g., due to parsing errors or mistakes
in Wikipedia itself. OpenCyc, on the other hand, is more focused on precise
data allowing for exact reasoning, but has a lower coverage than DBpedia. The
DBpedia dataset contains all types from the infobox types dataset (i.e., DBpedia
ontology, schema.org, and UMBEL).6

While DBpedia has all type information for the DBpedia ontology fully ma-
terialized w.r.t. rdfs:subClassOf, we manually materialized all direct types in
OpenCyc, using simple RDFS-like inference for subclasses and subproperties (the
latter are not used at all in the DBpedia ontology). Table 2 lists some relevant
characteristics of the datasets.

It can be observed that the class hierarchy of OpenCyc is several orders of
magnitude larger and more fine-grained than the class hierarchy of DBpedia. At
the same time, the average number of instances in each class is much smaller for
OpenCyc. Since the average number of properties per instance is also lower, the
problem of inferring types with SDType on OpenCyc is harder for two reasons:
there is les evidences for each instance, and the number of classes to predict is
higher.

For both datasets, we have used random samples of 10,000 instances. Fur-
thermore, we restrict our approach to using only ingoing properties. The reason
is that classification based on outgoing properties would oversimplify the prob-
lem. In DBpedia, outgoing properties and types are generated in the same step,
so the correct type can be trivially predicted from outgoing properties. The same
holds for OpenCyc, which uses per class templates for populating instance data
[17]. Furthermore, when trying to infer missing types, the instances with missing
types most often have no outgoing properties.

4.2 Results

Figure 2 shows the results of SDType on DBpedia.7 While it can be observed that
SDType works sufficiently well on the overall dataset (i.e., instances that have at

6 http://dbpedia.org/Downloads38
7 The predicted types include those defined in the DBpedia ontology, schema.org, and

UMBEL, as well as owl:Thing.

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

min. 1 link

min. 10 links

min. 25 links

Recall

P
re

ci
s

io
n

Fig. 2. Precision/recall curves of SDType on DBpedia, for instances with at least one,
at least 10, and at least 25 incoming links

least one ingoing link), achieving an F-measure of 88.5%, the results are slightly
better on instances that have at least 10 or 25 ingoing links, with an F-measure
of 88.9% and 89.9%, respectively. The differences show more significantly in the
precision@95% (i.e. the precision that can be achieved at 95% recall), which
is 0.69 (minimum one link), 0.75 (minimum ten links), and 0.82 (minimum 25
links), respectively.

Figure 3 depicts the corresponding results for OpenCyc. The first observation
is that the overall results are not as good as on DBpedia, achieving a maximum
F-measure of 60.1% (60.3% and 60.4% when restricting to instances that have
at least 10 or 25 ingoing links). The second observation is that the results for
instances with different numbers of ingoing properties do not differ much – in
fact, most of the differences are too small to be visible in the figure. While 95%
recall cannot be reached on OpenCyc with SDType, the precision@90% is 0.18
(minimum one link), 0.23 (minimum ten and 25 links), respectively.

The strong divergence of the results between DBpedia and OpenCyc, as
discussed above, was to be expected, since OpenCyc has on the one hand more
(and more specific) types per instance, on the other hand less evidence per
instance, since the number of properties connecting instances is smaller.

As the diagrams show, looking at instances with more links improves the
results on DBpedia, but not on OpenCyc (apart from a small improvement in
precision at a recall of around 0.9). The reason for that is that DBpedia, with its
stronger focus on coverage than on correctness, contains more faulty statements.
When more links are present, the influence of each individual statement is re-
duced, which allows for correcting errors. OpenCyc, on the other hand, with its
stronger focus on precision, benefits less from that error correction mechanism.

Since we assume that it is more difficult to predict more specific types (such
as Heavy Metal Band) than predicting more general ones (like Band or even
Organization), we have additionally examined the best F-measure that can be

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

min. 1 link

min. 10 links

min. 25 links

Recall

P
re

ci
s

io
n

Fig. 3. Precision/recall curves of SDType on OpenCyc, taking into account only in-
coming, only outgoing, and both incoming and outgoing properties

achieved when restricting the approach to a certain maximum class hierarchy
depth. The results are depicted in Fig. 4. It can be observed that SDType in fact
works better on more general types (achieving an F-measure of up to 97.0% on
DBpedia and 71.6% on OpenCyc when restricting the approach to predicting
only top-level classes). However, the effects are weaker than we expected.

5 Application: Completing Missing Types in DBpedia

In the following, we apply SDType to infer missing type information in DBpe-
dia. While DBpedia has a quite large coverage, there are millions of missing
type statements. To infer those missing types, we have combined the approach
sketched above with a preclassification step separating typeable from untypeable
resources in order to reduce false inferences.

5.1 Estimating Type Completeness in DBpedia

Aside from the type information in DBpedia using the DBpedia ontology, which
is generated using Wikipedia infoboxes, resources in DBpedia are also mapped
to the YAGO ontology [18]. Those mappings are generated from Wikipedia page
categories. Thus, they are complementary to DBpedia types – an article may
have a correct infobox, but missing category information, or vice versa. Both
methods of generating type information are prone to (different types of) errors.
However, looking at the overlaps and differences of type statements created by
both methods may provide some approximate estimates about the completeness
of DBpedia types.

To estimate the completeness of type information in DBpedia, we used a
partial mapping between the YAGO ontology [18] and the DBpedia ontology.8

8 http://www.netestate.de/De/Loesungen/DBpedia-YAGO-Ontology-Matching

10

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dbpedia

OpenCyc

Maximum class depth

B
e

s
t F

-m
e

a
s

u
re

Fig. 4. Maximum achievable F-measure by maximum class depth for DBpedia and
OpenCyc. The graph depicts the maximum F-measure that can be achieved when
restricting the approach to finding classes of a maximum hiearchy depth of 1, 2, etc.

Assuming that the YAGO types are at least more or less correct, we can estimate
the completeness of a DBpedia type dbpedia#t using the mapped YAGO type
yago#t by looking at the relation of all instances of dbpedia#t and all instances
that have at least one of the types dbpedia#t and yago#t:

completeness(dbpedia#t) ≤ |dbpedia#t|
|dbpedia#t ∪ yago#t|

(5)

The denominator denotes an estimate of all instances that should have the type
dbpedia#t. Since the actual number of resources that should have that type can
be larger than that (i.e., neither the DBpedia nor the YAGO type is set), the
completeness can be smaller than the fraction, hence the inequation.

Calculating the sum across all types, we observe that DBpedia types are at
most 63.7% complete, with at least 2.7 million missing type statements (while
YAGO types, which can be assessed accordingly, are at most 53.3% complete).
The classes the most missing type statements are shown in Fig. 5

Classes that are very incomplete include

– dbpedia-owl:Actor (completeness ≤ 4%), with 57,000 instances missing
the type, including, e.g., Brad Pitt and Tom Hanks

– dbpedia-owl:Game (completeness ≤ 7%), with 17,000 instances missing the
type, including Tetris and Sim City

– dbpedia-owl:Sports (completeness ≤ 5.3%), with 3,300 instances missing
the type, including Beach Volleyball and Biathlon

A similar experiment using the classes dbpedia-owl:Person and foaf:Person

(assuming that each person should have both types) yielded that the class
dbpedia-owl:Person is at most 40% complete. These examples show that the
problem of missing types in DBpedia is large, and that it does not only affect

11

Species 870506

Person 512999
Event 155109

Organisation 94764
Single 87898

Writer 69117
Actor 57006

Athlete 48352

Place 44474
Artist 43704

Other 750152

Fig. 5. Largest number of (estimated) missing type statements per class

marginally important instances. In DBpedia, common reasons for missing type
statements are

– Missing infoboxes – an article without an infobox is not assigned any type.

– Too general infoboxes – if an article about an actor uses a person infobox
instead of the more specific actor infobox, the instance is assigned the type
dbpedia-owl:Person, but not dbpedia-owl:Actor.

– Wrong infobox mappings – e.g., the videogame infobox is mapped to dbpedia-
owl:VideoGame, not dbpedia-owl:Game, and dbpedia-owl:VideoGame is
not a subclass of dbpedia-owl:Game in the DBpedia ontology.

– Unclear semantics – some DBpedia ontology classes do not have clear seman-
tics. For example, there is a class dbpedia-owl:College, but it is not clear
which notion of college is denoted by that class. The term college, accord-
ing to different usages, e.g., in British and US English, can denote private
secondary schools, universities, or institutions within universities.9

5.2 Typing Untyped Instances in DBpedia

In our second experiment, we have analyzed how well SDType is suitable for
adding type information to untyped resources. As discussed above, resources
may be missing a type because they use no infobox, an infobox not mapped to
a type, or are derived from a Wikipedia red link. In particular in the latter case,
the only usable information are the incoming properties.

Simply typing all untyped resources with SDType would lead to many errors,
since there are quite a few resources that should not have a type, as discussed

9 see http://oxforddictionaries.com/definition/english/college

12

in [1]. Examples are resources derived from list pages,10 pages about a category
rather than an individual,11 or general articles.12

In order to address that problem, we have manually labeled 500 untyped
resources into typeable and non-typeable resources. For those resources, we have
created features using the FeGeLOD framework [13], and learned a ruleset for
classifying typeable and non-typeable resources using the Ripper rule learner
[3]. The resulting rule set has accuracy of 91.8% (evaluated using 10-fold cross
validation).

From all 550,048 untyped resources in DBpedia, this classifier identifies 519,900
(94.5%) as typeable. We have generated types for those resources and evaluated
them manually on a sample of 100 random resources. The results for various
thresholds are depicted in Fig. 6. It can be observed that 3.1 types per instance
can be generated with a precision of 0.99 at a threshold of 0.6, 4.0 types with a
precision of 0.97 at a threshold of 0.5, and 4.8 types with a precision of 0.95 at a
threshold of 0.4.13. In contrast, RDFS reasoning on the test dataset generates 3.0
types per instance with a precision of 0.96, which shows that SDType is better
in both precision and productivity.

With those thresholds, we can generate a total of 2,426,552 and 1,682,704
type statements, respectively, as depicted in Table 3. It can be observed that
with the higher threshold guaranteeing higher precision, more general types are
generated, while more specific types such as Athlete or Artist, are rarely found.
In most cases, the generated types are consistent, i.e., an Artist is also a Per-
son, while contradicting predictions (e.g., Organization and Person for the same
instance) are rather rare.

6 Related Work

The problems of inference on noisy data in the Semantic Web has been identi-
fied, e.g., in [16] and [8]. While general-purpose reasoning on noisy data is still
actively researched, there have been solutions proposed for the specific problem
of type inference in (general or particular) RDF datasets in the recent past, us-
ing strategies such as machine learning, statistical methods, and exploitation of
external knowledge such as links to other data sources or textual information.

[11] use a similar approach as ours, but on a different problem: they try to
predict possible predicates for resources based on co-occurrence of properties.
They report an F-measure of 0.85 at linear runtime complexity.

Many ontology learning algorithms are capable of dealing with noisy data
[19]. However, when using the learned ontologies for inferring missing information
using a reasoner, the same problems as with manually created ontologies occur.

10 e.g., http://dbpedia.org/resource/Lists_of_writers
11 e.g., http://dbpedia.org/resource/Writer
12 e.g., http://dbpedia.org/resource/History_of_writing
13 A web service for DBpedia type completion, as well as the code used to produce the

additional types, is available at http://wifo5-21.informatik.uni-mannheim.de:

8080/DBpediaTypeCompletionService/

13

Table 3. Results for typing untyped resources, including main types found. The table
lists all types which were predicted for at least 1% of the instances in the test set.

Threshold 0.4 0.6
Estimated precision ≥ 0.95 ≥ 0.99

Total typed instances 440,849 373,366
Total type statements 2,426,552 1,682,704
Average types per typed instance 5.5 4.5
Distinct types assigned 144 121

Main types:

Person 236,608 (53.7%) 173,944 (46.6%)
– Athlete 71,226 (16.2%) 544 (<0.1%)
– Artist 21,219 (4.8%) 22 (<0.1%)
– Musical Artist 10,533 (2.4%) 21 (<0.1%)
– Writer 4,973 (1.1%) 0 (0.0%)

Place 79,115 (17.9%) 72,593 (19.4%)
– Settlement 52,622 (11.9%) 23,060 (6.2%)
– Natural Place 4,846 (1.1%) 2,293 (1.0%)

Organization 73,148 (16.6%) 46,988 (12.6%)
– Company 25,077 (5.7%) 21,509 (5.8%)
– Sports Team 15,176 (3.4%) 14,635 (3.9%)
– Record Label 13,444 (3.0%) 13,158 (3.5%)
– Band 12,770 (2.9%) 6 (<0.1%)

Creative Work 15,542 (3.5%) 13,130 (3.4%)
– Album 12,516 (2.8%) 191 (<0.1%)

Species 8,249 (1.8%) 7,988 (2.1%)
– Animal 7,815 (1.7%) 6,744 (1.8%)

One of the first approaches to type classification in relational data is discussed
in [10]. The authors train a machine learning model on instances that already
have a type, and apply it to the untyped instances in an iterative manner. The
authors report an accuracy of 0.81, treating type completion as a single-class
problem (i.e., each instance is assigned exactly one type).

The work discussed in [12] assumes that for many instances, there are some,
but not all types. Association rule mining is employed to find common patterns
of the type if type A and B are set, type C is also set, and apply them to the
knowledge base. The authors report that they can add around 3 additional types
to an average instance at a precision of 85.6%.

In [1], an approach is introduced which first exploits cross-language links be-
tween DBpedia in different languages to increase coverage, e.g., if an instance has
a type in one language version and does not have one in another language version.
Then, they use nearest neighbor classification based on different features, such as
templates, categories, and bag of words of the corresponding Wikipedia article.
On existing type information, the authors report a recall of 0.48, a precision of
0.91, and an F-measure of 0.63.

The Tipalo system [5] leverages the natural language descriptions of DBpedia
entities to infer types, exploiting the fact that most abstracts in Wikipedia follow
similar patterns. Those descriptions are parsed and mapped to the WordNet and

14

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

2

4

6

8

10

12

types generated
per instance

precision

Lower bound for threshold

P
re

ci
s

io
n

#
 ty

p
e

s

Fig. 6. Precision and average number of type statements per resource generated on
untyped resources in DBpedia

DOLCE ontologies in order to find appropriate types. The authors report an
overall recall of 0.74, a precision of 0.76, and an F-measure of 0.75.

The authors of [7] exploit types of resources derived from linked resources,
where links between Wikipedia pages are used to find linked resources (which are
potentially more than resources actually linked in DBpedia). For each resource,
they use the classes of related resources as features, and use k nearest neighbors
for predicting types based on those features. The authors report a recall of 0.86,
a precsion of 0.52, and hence an F-measure of 0.65.

The approach discussed in [15] addresses a slightly different problem, i.e.,
the mapping DBpedia entities to the category system of OpenCyc. They use
different indicators – infoboxes, textual descriptions, Wikipedia categories and
instance-level links to OpenCyc – and apply an a posteriori consistency check
using Cyc’s own consistency checking mechanism. The authors report a recall of
0.78, a precision of 0.93, and hence an F-measure of 0.85.

The approaches discussed above, except for [12], are using specific features
for DBpedia. In contrast, SDType is agnostic to the dataset and can be applied
to any RDF knowledge base. Furthermore, none of the approaches discussed
above reaches the quality level of SDType (i.e., an F-measure of 88.5% on the
DBpedia dataset).

With respect to DBpedia, it is further noteworthy that SDType is also
capable of typing resources derived from Wikipedia pages with very sparse in-
formation (i.e., no infoboxes, no categories, etc.) – as an extreme case, we are
also capable of typing instances derived from Wikipedia red links only by using
information from the ingoing links.

7 Conclusion and Outlook

In this paper, we have discussed the SDType approach for heuristically com-
pleting types in large, cross-domain databases, based on statistical distributions.
Unlike traditional reasoning, our approach is capable of dealing with noisy data
as well as faulty schemas or unforeseen usage of schemas.

15

The evaluation has shown that SDType can predict type information with
an F-measure of up to 88.9% on DBpedia and 63.7% on OpenCyc, and can be
applied to virtually any cross-domain dataset. For DBpedia, we have further-
more enhanced SDType to produce valid types only for untyped resources. To
that end, we have used a trained preclassifier telling typeable from non-typeable
instances at an accuracy of 91.8%, and are able to predict 2.4 million missing
type statements at a precision of 0.95, or 1.7 million missing type statements
at a precision of 0.99, respectively. We have shown that with these numbers, we
outperform traditional RDFS reasoning both in precision and productivity.

The results show that SDType is good at predicting higher-level classes (such
as Band), while predicting more fine-grained classes (such as Heavy Metal Band)
is much more difficult. One strategy to overcome this limitation would be to use
qualified relations instead of only relation information, i.e., a combination of the
relation and the type of related objects. For example, links from a music group
to an instance of Heavy Metal Album could indicate that this music group is to
be classified as a Heavy Metal Band. However, using such features results in a
much larger feature space [13] and thus creates new challenges with respect to
scalability of SDType.

The type statements created by SDType are provided in a web service in-
terface, which allows for building applications and services at a user-defined
trade-off of recall and precision, as sketched in [14].

The statistical measures used in this paper cannot only be used for predict-
ing missing types. Other options we want to explore in the future include the
validation of existing types and links. Like each link can be an indicator for a
type that does not exist in the knowledge base, it may also be an indicator that
an existing type (or the link itself) is wrong.

In summary, we have shown an approach that is capable of making type
inference heuristically on noisy data, which significantly outperforms previous
approaches addressing this problems, and which works on large-scale datasets
such as DBpedia. The resulting high precision types for DBpedia have been
added to the DBpedia 3.9 release and are thus publicly usable via to the DBpedia
services.

Acknowledgements. The authors would like to thank Christian Meilicke for his
valuable feedback on this paper.

References

1. Alessio Palmero Aprosio, Claudio Giuliano, and Alberto Lavelli. Automatic expan-
sion of dbpedia exploiting wikipedia cross-language information. In 10th Extended
Semantic Web Conference (ESWC 2013), 2013.

2. Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. DBpedia - A crystallization point for
the Web of Data. Web Semantics, 7(3):154–165, 2009.

3. William W. Cohen. Fast effective rule induction. In 12th International Conference
on Machine Learning, 1995.

16

4. Dieter Fensel and Frank van Harmelen. Unifying Reasoning and Search. IEEE
Internet Computing, 11(2):96,94–95, 2007.

5. Aldo Gangemi, Andrea Giovanni Nuzzolese, Valentina Presutti, Francesco Draic-
chio, Alberto Musetti, and Paolo Ciancarini. Automatic typing of dbpedia entities.
In 11th International Semantic Web Conference (ISWC 2012), 2012.

6. Lise Getoor and Christopher P Diehl. Link mining: a survey. ACM SIGKDD
Explorations Newsletter, 7(2):3–12, 2005.

7. Andrea Giovanni, Aldo Gangemi, Valentina Presutti, and Paolo Ciancarini. Type
inference through the analysis of wikipedia links. In Linked Data on the Web
(LDOW), 2012.

8. Qiu Ji, Zhiqiang Gao, and Zhisheng Huang. Reasoning with noisy semantic data.
In The Semanic Web: Research and Applications (ESWC 2011), Part II, pages
497–502, 2011.

9. Cynthia Matuszek, John Cabral, Michael Witbrock, and John DeOliveira. An in-
troduction to the syntax and content of cyc. In Proceedings of the 2006 AAAI
spring symposium on formalizing and compiling background knowledge and its ap-
plications to knowledge representation and question answering, 2006.

10. Jennifer Neville and David Jensen. Iterative classification in relational data. In
Proc. AAAI-2000 Workshop on Learning Statistical Models from Relational Data,
pages 13–20, 2000.

11. Eyal Oren, Sebastian Gerke, and Stefan Decker. Simple algorithms for predicate
suggestions using similarity and co-occurrence. In European Semantic Web Con-
ference (ESWC 2007), pages 160–174. Springer, 2007.

12. Heiko Paulheim. Browsing linked open data with auto complete. In Semantic Web
Challenge, 2012.

13. Heiko Paulheim and Johannes Fürnkranz. Unsupervised Feature Generation from
Linked Open Data. In International Conference on Web Intelligence, Mining, and
Semantics (WIMS’12), 2012.

14. Heiko Paulheim and Jeff Z. Pan. Why the semantic web should become more
imprecise. In What will the Semantic Web look like 10 years from now?, 2012.

15. Aleksander Pohl. Classifying the wikipedia articles in the opencyc taxonomy. In
Web of Linked Entities Workshop (WoLE 2012), 2012.

16. Axel Polleres, Aidan Hogan, Andreas Harth, and Stefan Decker. Can we ever catch
up with the web? Semantic Web Journal, 1(1,2):45–52, 2010.

17. Purvesh Shah, David Schneider, Cynthia Matuszek, Robert C. Kahlert, Bjørn
Aldag, David Baxter, John Cabral, Michael J. Witbrock, and Jon Curtis. Au-
tomated population of cyc: Extracting information about named-entities from the
web. In Proceedings of the Nineteenth International Florida Artificial Intelligence
Research Society Conference (FLAIRS), pages 153–158. AAAI Press, 2006.

18. Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of
semantic knowledge. In Proceedings of the 16th international conference on World
Wide Web, WWW ’07, pages 697–706. ACM, 2007.

19. Johanna Völker and Mathias Niepert. Statistical schema induction. In Proceedings
of the 8th extended semantic web conference on The semantic web: research and
applications - Part I, pages 124–138, Berlin, Heidelberg, 2011. Springer-Verlag.

20. W3C. RDF Semantics, 2004. http://www.w3.org/TR/rdf-mt/.

