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Abstract. Despite the growing amount of research in link and type
prediction in knowledge graphs, systematic benchmark datasets are still
scarce. In this paper, we propose a synthesis model for the generation
of benchmark datasets for those tasks. Synthesizing data is a way of
having control over important characteristics of the data, and allows the
study of the impact of such characteristics on the performance of dif-
ferent methods. The proposed model uses existing knowledge graphs to
create synthetic graphs with similar characteristics, such as distributions
of classes, relations, and instances. As a first step, we replicate already
existing knowledge graphs in order to validate the synthesis model. To
do so, we perform extensive experiments with different link and type
prediction methods. We show that we can systematically create knowl-
edge graph benchmarks which allow for quantitative measurements of
the result quality and scalability of link and type prediction methods.

Keywords: Knowledge Graphs, Link Prediction, Type Prediction, Bench-
marking

1 Introduction

Benchmarking is an important way of evaluating and comparing different meth-
ods for a given task. Having datasets with various characteristics is a crucial
part of designing good benchmarking tests, allowing to thoroughly analyze the
performance of a method under various conditions.

With the growing adoption and usage of Web-scale knowledge graphs, the
data quality of those graphs has drawn some attention, and methods for im-
proving the data quality, e.g., by predicting missing types and links, have been
proposed. While there are a few benchmarking datasets for other tasks in the
Semantic Web community, like SPARQL query performance [18, 30], ontology
matching [6], entity linking [8], machine learning [28], and question answering
[15], benchmarks for the task of type and link prediction are still missing. In
contrast, the majority of approaches is only tested on one or few datasets, most
prominently different versions of DBpedia, which makes it difficult to compare
the approaches [24]. Thus, it would be desirable to have benchmarking datasets
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with different characteristics, such as the number of entities, relation assertions,
number of types, the taxonomy of types, the density of the knowledge graph,
etc. Furthermore, it would be interesting to be able to have some control over
these characteristics, vary them if necessary, and generate a knowledge graph
following defined settings.

Generating data artificially for evaluation purposes is not something new.
Data synthesizers have been widely used in some other research areas. IBM
Quest Synthetics Data Generator1 is probably the most famous of them. It gen-
erates transaction tables for frequent pattern mining. There are also generators,
e.g., for spatial-temporal data [31], clustering and outlier detection [5], data for
information discovery and analysis systems [29], and high-dimensional datasets
[1].

The overall goal is to synthesize a multitude of knowledge graphs to design
benchmarkings for the tasks of link and type prediction. A first step to achieve
this goal is to be able to replicate already existing datasets. In this paper, we
propose knowledge graph models, and a synthesis process that is able to gener-
ate data based on the models. To show the validity of the synthesis approach,
our main goal is to replicate the performance measures obtained for evaluation
measures when performing link and type prediction with various state-of-the-art
methods. We want to minimize the distance between the original dataset and
the synthesized replicas for these measures, and also preserve method rankings.
In our case, we select five methods for each task.

In order to be able to run systematic scalability tests with different ap-
proaches, we also explore the possibility to generate replicas of different sizes
(number of entities and facts). The results should be preserved when varying
the size of the synthesized data.

The rest of this paper is structured as follows. Section 2 discusses related
work. We introduce our model for knowledge graphs in section 3, and discuss the
synthesis approach in section 4. In a set of experiments, we discuss the validity
of our approach in section 5, and conclude with a summary and an outlook on
future work.

2 Related Work

There have been works which address the synthesis of knowledge graphs for
benchmarking purposes. However, most efforts were focused on synthesizing A-
box assertions for a specific T-box. Moreover, these works generate benchmarking
datasets for different tasks in the Semantic Web, but none of them focus on link
and type prediction.

Guo et al. [12] propose a method for benchmarking Semantic Web knowl-
edge base systems on large OWL applications. They present the Lehigh Uni-
versity Benchmark (LUBM), which has an ontology for the university domain
and includes the Univ-Bench artificial data generator (UBA), as well as a set of

1 http://www.philippe-fournier-viger.com/spmf/datasets/IBM_Quest_data_

generator.zip
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queries and performance measures for evaluation. The data generator synthesizes
A-boxes of arbitrary size to evaluate scalability. The data contains information
about universities, which are artificially created based on some predefined re-
strictions, e.g. minimum and maximum number of departments, student/faculty
ratio, which are based on arbitrary defined ranges.

SP2Bench [30] is a SPARQL performance benchmark based on DBLP data.
It features a data generator, which can create arbitrarily large datasets. Similarly
to UBA, the authors synthesize the A-box based on an existing T-box, in this
case the DBLP ontology, and a dataset specific model used to generate the
synthetic data. The model uses logistic curves and simple intervals to describe
characteristics of the DBLP data, such as the number and types of publications,
distribution of citations, and level of incompleteness over years.

Morsey et al. [18] created a SPARQL query benchmark based on DBpedia to
evaluate knowledge base storage systems. They gather a set of real world queries
extracted with query log mining, and run them on datasets of different sizes
generated from DBpedia. Their “data generation” process consists of sampling
the original DBpedia dataset and changing the entities namespace. Two sampling
methods are considered: rand, which basically randomly selects a fraction of the
triples, and seed, which first sample a subset of the classes, then instances of
these classes are also sampled and added to a queue. This process is iterated
until the target dataset size is reached.

Linked Data Benchmark Council (LDBC) [2] developed the social network
benchmark (SNB) and the semantic publishing benchmark (SPB). The SNB
which includes a data generator that enables the creation of synthetic social
network data representative of a real social network. The data generated in-
cludes properties occurring in real data, e.g. irregular structure, structure/value
correlations and power-law distributions. The benchmark covers main aspects
of social network data management, including interactive, business intelligence
and graph analytics workload. The SPB is similar to the SNB, but it concerns
the scenario of a media organization that maintains RDF descriptions of its
catalogue of creative works.

3 Knowledge Graph Model

We define a knowledge graph K = (T ,A), where T is the T-box and A is the
A-box containing relations assertions AR and type assertions AC . We define NC

as the set of concepts (types), NR as the set of roles (object properties) and NI

as the set of individuals (entities which occur as subject or object in relations).
The set of relation assertions is defined as AR = {p(s, o)|p ∈ NR ∧ s, o ∈ NI}
and the set of type assertion as AC = {C(s)|C ∈ NC ∧ s ∈ NI}.

In our proposed model, we learn the joint distribution of types over instances.
To that end, we compute P (T ), which is the probability of an individual having
a set of types T . We define the set of types τ(s) of a given individual s as
τ(s) = {C|C(s) ∈ AC} and the set of individuals of given set of types T as
ET = {s|τ(s) = T}. This is important because most knowledge graphs allow
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instances to have multiple types, and by modeling the distribution of instances
over sets of types we can capture the dependencies between types, which is
relevant for the problem described in this paper. It is important to notice that,
e.g., Arnold Schwarzenegger with set of types T = {Actor, Politician, BodyBuilder} is
not considered to belong to {Actor, Politician} when computing the distributions.
With that, we make sure that

∑
T∈P(NC) P (T ) = 1, where P(NC) is the powerset

of types containing all possible combinations of types

P (T ) =
|{s|τ(s) = T}|

|NI |
(1)

We also model the joint distribution of relations and the type set of their subject
(Ts) and object (To), which we call P (r, Ts, To). This distribution allows us to
model how different types are related, and capture domain and range restrictions
of relations in a fine grained way. For example, we can model not only that the re-
lation playsFor has domain Athlete and range SportsTeam, but also how athletes are
distributed over more specific types (e.g., FootballPlayer, BasketballPlayer, etc.)
and how teams are distributed over subclasses of SportsTeam (e.g., FootballTeam,
BasketballTeam, etc.), and most importantly, we can model that FootballPlayer

playsFor FootballTeam and BasketballPlayer playsFor BasketballTeam.
We model the joint distribution P (r, Ts, To) with the chain rule (3). We de-

compose it into the distribution of relations over facts P (r), conditional distri-
butions of subject type set given relation P (Ts|r) and a conditional distributions
of object type set given subject type set and relation P (To|r, Ts).

P (r, Ts, To) = P (r)P (Ts|r)P (To|r, Ts) (2)

P (r) =
|{p(s, o) ∈ AR|p = r}|

|AR|
(3)

P (Ts|r) =
|{p(s, o) ∈ AR|p = r ∧ τ(s) = Ts}|

|{p(s, o) ∈ AR|p = r}|
(4)

P (To|r, Ts) =
|{p(s, o) ∈ AR|p = r ∧ τ(s) = Ts ∧ τ(o) = To}|

|{p(s, o) ∈ AR|p = r ∧ τ(s) = Ts}|
(5)

It is important to note that in case there are inconsistencies in the knowledge
graph, such as domain/range violations or the assignment of inconsistent types,
they are also captured in the distribution P (r, Ts, To), and can be later replicated
with their respective probabilities.

Besides the probability distributions of types and relations, individuals also
follow a certain probability distribution, and not all relations have a uniform
distribution w.r.t. their subjects and objects. In many cases, when selecting
the individuals from ETs

and ETo
, there might be some bias which we should

take into account. For instance, if we select r = livesIn, Ts = {Person} and
To = {Country}, we should not select the individual for Country based on an
uniform distribution. The distribution should be biased towards more populous
countries, e.g., the probability of selecting China should be much higher that
of Vatican. At the same time, for the r = capitalOf with To = {Country}, the
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distribution of countries should be uniform since all the countries are equally
likely to have a capital.

After selecting the relation r and type set of subject Ts and object To, we then
need to select the subject and object individuals. Since in our synthesis process
we first generate the individuals and their type assertions and then generate the
relations assertions, there exist a limited number of individuals belonging to a
given type set T which we define as nT = |ET |.

Following those considerations, we compute the conditional distributions of
subject and object individuals given a relation and type set of subject and object,
which we call P (e|r, Ts) and P (e|r, To), respectively. To that end, we count the
occurrences of subject individuals for all relations r and subject type set Ts, and
occurrences of object individuals for all r and To. We then sort the individuals
by frequency in descending order and fit a distribution model.

We need to select an instance from a finite set ET , and we should be able to
vary the size nT in order to be able to scale the knowledge base up and down.
Therefore we consider the use of uniform and exponential truncated distributions
(c.f. Equations 6 and 7).

f(x, b) =

{
1
b

, if 0 ≤ x < b

0 , otherwise
(6) f(x, b) =

{
e−x

1−e−b , if 0 ≤ x < b

0 , otherwise
(7)

In truncated distributions, occurrences are limited to values which lie inside
a given range. In the case of Equations 6 and 7, that interval is 0 ≤ x < b.
It is important to use truncated functions, because when synthesizing relation
assertions and selecting the individual for a given type, we can set b = nT , and
select an individual amongst the limited number of individuals that have the
required type.

All distributions presented earlier in this section can effectively replicate some
characteristics of a knowledge graph, such as in and out degree and density of the
graph, however, they are not able to replicate more complex patterns involving
paths in the graph. An example of such pattern in a knowledge graph containing
data about families is that people who are married to the parent of a given
child are also the parent of that child with some confidence. This pattern can be
represented with the horn rule below.

marriedTo(x,y) ∧ childOf(x,z)⇒ childOf(y,z) [conf = 0.93]

Horn rules are basis of inductive logic programming (ILP) systems, such as
ALEPH [19], WARMR [11], DL-Learner [14], and AMIE [9]. There are also
ILP extensions with probabilistic methods [27] and that can efficiently handle
numerical attributes [17]. We choose to use AMIE especially because of its better
scalability in comparison to ALEPH and WARMR.

As most ILP systems, AMIE uses techniques to restrict the search space.
AMIE mines only closed and connected rules. A rule is connected if all of its
atoms are connected transitively to every other atom of the rule, and two atoms
are connected if they share a variable or a constant. A rule is closed if every
variable in the rule appears at least twice. Such rules do not predict merely the
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existence of a fact (e.g. diedIn(x,y)⇒ wasBornIn(x,z), which is connected rule, but
not closed), but the concrete arguments for it (e.g. diedIn(x,y)⇒ wasBornIn(x,y)).

We use the horn rules learned by AMIE in our KB model in order to repre-
sent more complex patterns and use their associated PCA (partial close-world
assumption) confidence value in the synthesis. In our model, we are able to ensure
various relation characteristics. The RDF Schema domain and range restrictions
can be ensured by the joint distribution P (r, Ts, To). The horn rules can model
symmetric, transitive, equivalent, and inverse properties.

To cover even more complex schemas, we additionally learn functionality,
inverse functionality and non-reflexiveness from the data. All relations which do
not have any same individual as both subject and object of a triple are considered
non-reflexive, all relations with object cardinality of 1 are considered functional,
and with subject cardinality of 1 are considered inverse functional. Learning
these characteristics from data allows us to detect relations which might not
have been conceived as, or not defined as such in the schema, but which in
the available data present the characteristics. For instance, a dataset with the
childOf relation, which is not functional, might contain data about people which
have exclusively one child, and with our approach we ensure this characteristic
is replicated.

4 Synthesis Process

Algorithm 1 summarizes the process of synthesizing a knowledge graph. As input,
it uses the probability distributions P (T ), P (r, Ts, To), P (e|r, Ts), and P (e|r, To),
a set of horn rules H, as well as the desired number of individuals ne and relation
assertions nf to be synthesized.

The function verify triple first verifies if the exact same triple is already
present in the synthesized KG. Then it checks whether functionality, inverse
functionality, and non-reflexiveness are satisfied. That is, it verifies if there is
no assertion with the given subject already present in the KG for functional
relations, no assertion with the given object for inverse functional relations, and
the given subject and object are different individuals for non-reflexive relations.

The function check horn rules ensures that the patterns learned with the
horn rules are replicated in the synthesized data. It checks if a newly synthesized
fact triggers any of the learned horn rules. If a rule is triggered, the rule will
produce a new fact with a probability equal to that of its confidence. The new
facts produced by rules also need to be checked against the horn rules again,
which means that the check horn rules function is called recursively until it
does not produce any new facts.

The function update distribution makes sure that the original distribu-
tion P (r, Ts, To) is not distorted by the production of new facts from horn rules,
which may not follow P (r, Ts, To). Therefore, it is necessary to adjust the joint
distribution in order to compensate this effects. We do that by simply keeping
counts for the relations, subject and object type sets, and based on the number



Synthesizing Knowledge Graphs for Link and Type Prediction Benchmarking 7

Algorithm 1 Knowledge base synthesis process

1: function gen kb(ne, nf , P (T ), P (r), P (r, Ts, To),H)
2: A ← ∅ . Create empty A-Box
3: E ← {} . Map of type sets and their entities
4: for i← 1 to ne do . synthesize entities
5: Ti ← randomly choose from P (T )
6: E[Ti] ← E[Ti] ∪ {ei}
7: for C ∈ Ti do
8: A ← A∪ {C(ei)}
9: end for

10: end for
11: i ← 0
12: while i < nf do . synthesize relation assertions
13: ri, Tsi , Toi ← randomly choose from P (r, Ts, To) . use chain rule
14: si ← select entity(E[Tsi ], P (e|ri, Tsi))
15: oi ← select entity(E[Toi ], P (e|ri, Toi))
16: if verify triple(si, ri, oi) then
17: A ← A∪ {ri(si, oi)}
18: check horn rules(A, (si, ri, oi),H)
19: update distribution(P (r, Ts, To))
20: i ← i+ 1
21: end if
22: end while
23: return A
24: end function

of facts to be synthesized and the distribution of already synthesized facts we
can adjust P (r, Ts, To).

Another detail not shown in algorithm 1 is the use of a pool of subjects for
functional and pool of objects for inverse functional relations. We do that in order
to avoid generating facts which violate the functionality and inverse functionality
restrictions. If no pools are considered, the probability of generating violating
facts for a given relation increases linearly with the number of already existent
facts. With the pools, all individuals of a given type are initially in the pool,
and whenever an individual is picked to generate a new fact, this individual is
removed from the pool and cannot be picked again, therefore preventing the
violations.

In the synthesis process some characteristics can be easily changed. Noise can
be introduced by smoothing the distribution P (r, Ts, To), making the probability
for invalid combinations of relations, subject and object types non-zero. The
density of the knowledge graph can be altered by modifying the ratio nf/ne
between number of facts and individuals. It is possible to change the scale of
the synthetic knowledge graphs by simply multiplying the original number of
individuals ne and facts nf by a constant. That is, assuming that the number of
relations in the knowledge graph are linear, i.e., the number of relation assertions
grows linearly with the number of individuals.
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However, some knowledge graphs might have relations which are quadratic,
e.g. owl:differentFrom that indicates individuals that are not the same. Therefore,
for the quadratic relations of a knowledge base, we need to scale the number of
relation assertions quadratically with the number of individuals. This kind of
relations are rather rare, and they can be difficult to automatically detect. We
use a simple heuristic based on thresholds for the average number of different
objects per subject and different subjects per object. If both thresholds are
reached, we assume the relation to be quadratic.

One important characteristic is that the synthesis process is based on pseudo
random number generators (PRNG), therefore, the process is deterministic and
identical datasets can be generated if the same seed is used. By using different
seeds, it is also possible to generate different datasets from the same model and
with similar characteristics, allowing us to test the stability of methods.

5 Experiments

The link prediction task consists of predicting the existence (or probability of
correctness) of edges in the graph (i.e., triples). This is important since existing
knowledge graphs are often missing many facts, and some of the edges they con-
tain are incorrect. Nickel et al. [20] present a review of multirelational models,
many of which have been used for the link prediction task. In this paper, we
select five popular methods to be used in our experiments: Path Ranking al-
gorithm [13], SDValidate [26], Holographic embeddings (HolE) [21], Translation
embeddings (TransE) [4] and RESCAL [22]. In our experiments, we evaluate the
prediction of relation assertions only. All the measurements reported were ob-
tained using 5-fold cross-validation. The test set consists of the 20% of positive
positive triples selected in the cross-validation, plus negative examples. There
are the same number of positive and negative examples in the test set, and
the negative examples are generated by corrupting each of the positive triples
following the method described by Bordes et al. [4].

Type prediction can be considered a subtask of link prediction where we are
interested on prediction links for the relation rdf:type. There are several type
prediction approaches which rely on external features [32, 3, 10, 23], however, in
this paper, we concentrate on methods which rely on features extracted from the
knowledge graph. The methods used in the experiments are SDType [25] and
SLCN [16], as well as the state-of-art multilabel classifiers MLC4.5 [7], MLP [33]
and MLkNN [34] – multilabel versions of decision tree, multilayer perceptron
and k-nearest neighbors – with ingoing and outgoing links used as features as
described in [16].

As input knowledge graphs, we use Wikidata, DBpedia (2015-10), and NELL.
We use the following smaller domain specific datasets: Thesoz2, Semantic Bible3

2 http://www.gesis.org/fileadmin/upload/dienstleistung/tools_standards/

thesoz_skos_turtle.zip
3 http://www.semanticbible.com/
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Dataset Entities Types Rels Type ass. Relation ass. Density

Wikidata 19060716 474 482 40198183 18955236 1.082 · 10−10

DBpedia 4940352 1027 646 31521734 14747048 9.353 · 10−10

NELL 1475674 276 248 5565472 174621 3.233 · 10−10

AIFB 27100 63 82 59613 59349 9.855 · 10−7

Mutagenesis 14157 91 4 48111 26533 3.310 · 10−5

SemanticBible 789 71 31 2563 2482 1.286 · 10−4

Thesoz 48540 10 16 109960 275430 7.306 · 10−6

NobelPrize 10013 23 18 19506 30148 1.671 · 10−5

ESWC2015 1285 16 25 1285 4062 9.840 · 10−5

ISWC2013 2548 20 39 2545 9992 3.946 · 10−5

WWW2012 3836 22 43 3907 15406 2.435 · 10−5

LREC2008 3502 7 24 3502 16514 5.611 · 10−5

Table 1: Statistics about the datasets used in the experiments

AIFB portal4, Nobel Prize5 and Mutagenesis. We also select four of the largest
conference datasets from the Semantic Web dog food corpus6, i.e., LREC2008,
WWW2012, ISWC2013, and ESWC2015. Some relevant statistics about the
datasets used in the experiments are shown in Table 1.

For every input KG, we synthesize replicas of three different sizes increased by
factors of 10. For smaller datasets we also scale the replicas up. On the Semantic
Web dog food datasets we synthesize replicas of sizes 10%, 100% and 1000%. For
large datasets we scale the replicas down (DBpedia and Wikidata replicas are of
sizes 0.01%, 0.1% and 1%, and the remaining datasets 1%, 10% and 100%).

We use the scikit-kge7 implementation of HolE, TransE and RESCAL, and
the scikit-learn implementation of MLkNN, MLC4.5 and MLP. We implemented
the remaining methods ourselves. The proposed synthesis process code is avail-
able to download.8

The evaluation measures used in the link experiments are the area under the
precision-recall curve (PR AUC) and area under the ROC curve (ROC AUC). For
the type prediction experiments we use micro-averaged F1-score and accuracy.
We compute the distance of these evaluation measures between the results on the
original datasets, and their synthetic replicas. In order to compare the ranking
of methods, we use the Spearman-ρ rank correlation coefficient. All the results
reported in this paper were obtained with 5-fold cross-validation.

In order to evaluate how the different parts of the proposed knowledge base
model affect the results on link and type prediction tasks, we use 6 different
models in our evaluation: M1, M2, M3, e(M1), e(M2) and e(M3):

4 http://www.aifb.kit.edu/web/Web_Science_und_Wissensmanagement/Portal
5 http://www.nobelprize.org/nobel_organizations/nobelmedia/nobelprize_

org/developer/manual-linkeddata/terms.html
6 http://data.semanticweb.org/dumps/conferences/
7 https://github.com/mnick/scikit-kge
8 https://github.com/aolimelo/kbgen
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(a) Link prediction PR AUC distance on No-
bel Prize dataset

(b) Type prediction F1-score distance on
Wikidata

Fig. 1: Distances of performance measures to original datasets

– M1 is the simplest version, which considers only the distributions P (T ) and
P (r, Ts, To). The bias to selection of individuals is not considered, and indi-
viduals are always selected from an uniform distribution. No relation charac-
teristics (apart from domain and range restrictions covered by P (r, Ts, To))
are considered.

– M2 is M1 plus functionality, inverse functionality and non-reflexiveness of
relations.

– M3 is M2 plus the horn rules learned with AMIE.
– The models e(Mi) are the model Mi plus the biases to selection of individuals
P (e|r, Ts) and P (e|r, To).

We use AMIE with its default parameter settings (i.e., no rules with constants,
maximum rule length = 3, confidence computed with PCA, minimum support
= 100 examples, minimum head coverage = 0.01).

We use PRA with maximum path length of 3 for all datasets. For HolE,
TransE and RESCAL we learn embeddings with 20 dimensions and maximum
of 100 epochs. While this may not be the optimal settings for most datasets, we
consistently use the same settings throughout all of our experiments, since our
aim is not to achieve optimal results, but to show that the benchmark synthesis
works as desired.

Figure 1a shows an example of PR AUC distance on link prediction from
for the Nobel Prize datasets between original and replica (100% size) with the 5
selected methods. It is clear that the use of horn rules significantly improves the
results, as M3 and e(M3) performs better than the other methods, except from
SDValidate, which relies on exclusively on distributions of relations and object
types and does not exploit more complex path patterns.

Figure 1b shows an example of F1-score distance on type prediction for Wiki-
data between original and replica (0.1% size). It is noticeable that horn rules
do not improve the results, as M1, M2, e(M1) and e(M2) perform better than
M3 and e(M3). This is explained by the fact that most of the evaluated type
prediction methods rely solely on ingoing and outgoing links of entities. More-
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(a) Link prediction on LREC2008 (PRA) (b) Type prediction on DBpedia (SLCN)

Fig. 2: Effect of scaling the replica sizes up and down

PR AUC ROC AUC
M1 e(M1) M2 e(M2) M3 e(M3) M1 e(M1) M2 e(M2) M3 e(M3)

ρall 0.527 0.643 0.567 0.607 0.643 0.653 0.647 0.613 0.657 0.613 0.610 0.577
ρlarge 0.640 0.740 0.590 0.580 0.730 0.800 0.650 0.610 0.640 0.630 0.670 0.620
dall 0.243 0.247 0.247 0.245 0.112 0.115 0.231 0.230 0.231 0.231 0.109 0.111
dlarge 0.215 0.228 0.216 0.219 0.082 0.089 0.211 0.215 0.208 0.211 0.087 0.095

Table 2: Summary of the link prediction results

over, as explained in Section 3, horn rules can disturb the original distribution
P (r, Ts, To), which is crucial for the replication of ingoing and outgoing links.

Tables 2 and 3 show a summary of the results obtained over all datasets for
type prediction and link prediction, respectively. The values with subscript all
report the average of the results over all different sizes of replicas, while those
with subscript large report the averages over the largest size of replicas only.
We do that because different models, especially M3 and e(M3), perform worse
than others for smaller replica sizes, and we also want to know how the models
perform when ruling out this effect.

The results of Table 2 indicate that in terms of distance, M3 is the best
method overall, however, when it comes to preserving the rankings, the results
become more mixed. It is clear that introducing the horn rules does have a
positive effect on the model, especially for the distances which are reduced to
less than half of that of other models. In Table 3 we can see that M2 is the best
overall in terms of distance for both PR and ROC AUC, while for the rankings,
the use of horn rules again have a positive impact with M3 being the best
method overall. The link prediction results were reported for all datasets apart
from DBpedia and Wikidata. Because of the large size of these two datasets and
the complexity of the approaches, the experiments did not finish in less than a
week.

We also perform the Nemenyi test in order to find how significant the differ-
ences of the evaluated models is, both in terms of distance and ranking. Figure 3
shows the critical distance diagrams. For the distances d the models on the left
side are the best performers, since lower distances are desired, while for Spear-
man’s rank correlations ρ the models on the right side are the best performers,
since higher correlations are desired.
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F1-score Accuracy
M1 e(M1) M2 e(M2) M3 e(M3) M1 e(M1) M2 e(M2) M3 e(M3)

ρall 0.208 0.221 0.195 0.259 0.362 0.265 0.290 0.334 0.315 0.343 0.406 0.307
ρlarge 0.343 0.273 0.251 0.400 0.456 0.410 0.470 0.420 0.357 0.498 0.502 0.433
dall 0.086 0.098 0.082 0.083 0.131 0.130 0.061 0.064 0.057 0.061 0.065 0.066
dlarge 0.059 0.065 0.055 0.057 0.083 0.084 0.056 0.060 0.054 0.057 0.061 0.062

Table 3: Summary of the type prediction results

(a) Link prediction (PR AUC) dall (b) Link prediction (PR AUC) ρall

(c) Type prediction (F1) dall (d) Type prediction (F1) ρall

Fig. 3: Nemenyi Critical distance diagrams for link and type prediction

In Figure 3a we can see that PR AUC distances on link prediction between
the models with horn rules (M3 and e(M3)) and the others is very significant,
while the differences in terms of Spearman-ρ from Figure 3b are closer to the
critical distance (CD). We can also observe that the difference between M3 and
e(M3) is not significant, indicating that the use of bias to selection of instances
does not have a great impact. One possible explanation for that is the fact that,
in order to simplify our model and abstract from specific instances, we assume
that, for a given type set, the most frequent instances are always the same. That
is, if we consider the type set {Country} as object of livesIn and beatifiedPlace,
we assume that the most frequent country in both cases is the same individual,
while in reality the most frequent country for livesIn would be China and for
beatifiedPlace Italy. Since the computation of the bias can be very expensive,
especially for larger datasets with high number of types and individuals, M3
would be a more reasonable choice than e(M3).

When analyzing Figure 3c, we notice that, in terms of F1-score distance, the
M2, e(M2) and M1 are not significantly different from each other, and the use
of horn rules has a significant negative effect. The Spearman-ρ from Figure 3d
values are very close to each other, without any significant difference between
the evaluated models.

We illustrate the difference in runtime for the synthesis processes with differ-
ent methods with Figure 4. The plot shows the number of facts generated over
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Fig. 4: Synthesis process runtime over dataset size for the ESWC2015 model

time for the ESWC2015 dataset. It is clear that M3 and e(M3) are significantly
slower than the others. It is also worth noting that these two models require
horn rules, which need to be learned with AMIE increasing the model learning
time as well.

6 Conclusion and Outlook

In this paper, we have proposed a knowledge graph model and synthesis process
which is able to capture essential characteristics of existing knowledge graphs,
which allows us to create replicas of those graphs at different scales.

Extensive experiments comparing the replicas and original datasets in the
link and type prediction tasks were conducted. We have performed evaluations
with five different methods for each tasks and comparisons of distances and
methods rankings between replicas and original datasets. Overall, the model M3
was the best performer, and the use of horn rules significantly improved the
results. The use of a bias to selection of subject and object individuals did not
show any significant improvement. In general, we recommend the use of M3,
unless the objective is to replicate the results of type prediction on a single
methods, without performing any comparisons. In that case M2, which does not
include horn rules, would be the best option.

In the future, we intend to start synthesizing knowledge graphs from scratch,
which would involve the synthesis of whole schemas. We plan to create a system
which enables users to synthesize data based on a set of parameters that gives
control on important characteristics of a knowledge base, such as number of en-
tities, types, relations, assertions of types and relations, density, connectivity.
Finally, we want to synthesize a set of knowledge bases of different character-
istics to create a larger collection of benchmarks for link prediction and type
prediction.
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