
Data-driven Joint Debugging
of the DBpedia Mappings and Ontology

Towards Addressing the Causes
instead of the Symptoms of Data Quality in DBpedia

Heiko Paulheim

Data and Web Science Group, University of Mannheim, Germany
heiko@informatik.uni-mannheim.de

Abstract. DBpedia is a large-scale, cross-domain knowledge graph ex-
tracted from Wikipedia. For the extraction, crowd-sourced mappings
from Wikipedia infoboxes to the DBpedia ontology are utilized. In this
process, different problems may arise: users may create wrong and/or
inconsistent mappings, use the ontology in an unforeseen way, or change
the ontology without considering all possible consequences. In this pa-
per, we present a data-driven approach to discover problems in mappings
as well as in the ontology and its usage in a joint, data-driven process.
We show both quantitative and qualitative results about the problems
identified, and derive proposals for altering mappings and refactoring the
DBpedia ontology.

Keywords: Knowledge Graph Construction, Knowledge Graph Debugging,
Ontology Debugging, Data Quality, Data-driven Approaches, DBpedia

1 Introduction

Knowledge graphs on the Web are a backbone of many information systems
that require access to structured knowledge, be it domain-specific or domain-
independent [17]. The idea of feeding intelligent systems and agents with general,
formalized knowledge of the world dates back to classic Artificial Intelligence
research in the 1980s [21]. More recently, with the advent of Linked Open Data
[3] sources like DBpedia [14] or YAGO [24], and by Google’s announcement of the
Google Knowledge Graph in 20121, representations of general world knowledge
as graphs have drawn a lot of attention again.

In the Linked Open Data cloud, the DBpedia knowledge graph has become
a central hub and widely used resource [22]. DBpedia is created from Wikipedia
by harvesting information from infoboxes in Wikipedia pages. Those are mapped
to an ontology in a community effort. Using those mappings, an A-box for the

1 http://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-

things-not.html

ontology T-box is automatically extracted using the DBpedia extraction frame-
work [14]. While this approach allows for a reasonable coverage, there are various
steps where errors can be introduced: for example, users may create wrong map-
pings or use the ontology in an unforeseen way. Those errors may lead to wrong
extractions, which may limit the utility of the knowledge graph.

To address those shortcomings, various methods for knowledge graph refine-
ment have been proposed. In many cases, those methods are developed by re-
searchers outside the organizations or communities which create the knowledge
graphs. They rather take the extracted DBpedia A-box and try to increase its
quality by various means [17]. However, most of those approaches which target
error correction focus on identifying single wrong assertions in the knowledge
graph as a post-processing step to the construction. This means that the out-
come is usually a long list of problematic assertions, which, depending on how
reliable the approach is and how defensive the removal of assertions from the
graph should be, need to be checked manually, which is a time-consuming pro-
cess. Furthermore, upon a regeneration of the knowledge graph (e.g., with an
updated set of heuristics and/or input corpus), the process needs to be run
again. As new DBpedia releases are usually created on a bi-yearly basis2, this
means that the output of those approaches cannot be easily reused, and hence
is discarded after six months in most of the cases.3

Therefore, a more sustainable way of handling data quality in DBpedia is
required. In this paper, we propose a data-driven process which enriches the DB-
pedia knowledge graph with provenance information that allows for tracking the
mapping which was responsible for creating an assertion in the DBpedia knowl-
edge graph, or the ontology assertion that caused a statement to be inconsistent.
By automatically identifying clusters inconsistent statements and corresponding
mapping assertions, we are able to rank and pinpoint wrong mappings, as well
as issues in the DBpedia ontology and its usage. By this, we can identify map-
pings to be changed, as well as proposals for refactoring the DBpedia ontology.
Thereby, we step from identifying the symptoms of data quality in DBpedia to
addressing their causes.

The rest of this paper is structured as follows. Section 2 discusses related
work. In section 3, we sketch our approach, followed by a quantitative and qual-
itative analysis of the findings in section 4. We close with a summary and an
outlook on future work.

2 Related Work

In this paper, we target the identification of systematic errors in the construction
of the large-scale knowledge graph DBpedia.

There is a larger body of work which targets at finding errors in web knowl-
edge graphs such as DBpedia. The approaches vary both with respect to the

2 http://wiki.dbpedia.org/why-is-dbpedia-so-important
3 A continuously updated knowledge graph, like DBpedia Live [10], generates a whole

new set of challenges, which are out of scope of this paper.

methods employed as well as to the targeted type of assertions – i.e., identify-
ing wrong type assertions, relational assertions, literals, etc. Methods found in
the literature range from statistical methods [18] and outlier detection [6, 16,
27] to using external sources of knowledge, such as web search engines [13]. In
addition, crowdsourcing [1] and games with a purpose [26] have been proposed
as non-automatic means for identifying errors in knowledge bases. While such
approaches can lead to a high precision, their main problem lies in scalability to
larger knowledge bases [18].

Since many (but not all) wrong statements in a knowledge graph may sur-
face as an inconsistency w.r.t. the underyling ontology, a few approaches rely
on the use of reasoning given the knowledge graph’s ontology for detecting in-
consistencies. However, the DBpedia ontology – as many schemas used for pro-
viding Linked Open Data – is not very expressive, in particular with respect
to the presence of disjointness axioms. Thus, there is a natural limitation for
reasoning-based approaches. Hence, such approaches are often combined with
ontology learning as a preprocessing step to enrich the ontology at hand [12,
15, 25], or exploit upper level ontologies [11, 19, 23]. Like the work presented in
this paper, the latter two try to identify root causes: the former use T-box level
reasoning to identify unsatisfiable concepts, the latter performs clustering on the
reasoner’s outcome to identify clusters of similar inconsistencies, which can often
be attributed to a common root cause.

Reasoning on large-scale knowledge graphs, however, is a resource-intensive
problem [20]. An approximation to the problem has thus been proposed in [4],
in which schema-level reasoning on the DBpedia mappings and the DBpedia on-
tology is used to find inconsistent mapping assertions. Thus, the computational
problem of dealing with a massive A-box is circumvented, while the T-box used
in the reasoner is by several orders of magnitude smaller. In contrast to the work
presented in this paper, this works at much faster runtimes, but cannot detect
certain types of defects (e.g., the range of object properties is not respected).

3 Approach

Wrong assertions in a knowledge graph like DBpedia often surface as an in-
consistency with the underlying ontology4. Therefore, in our approach, we first
determine whether a single relation assertion is consistent with the subject’s and
object’s types. Furthermore, we identify the DBpedia mappings that are respon-
sible for the assertion at hand, and group the inconsistencies by the mapping.
For each mapping, we can then compute scores which determine how frequently
the mapping is involved in inconsistent statements, and hence, identify mappings
which should be inspected by an expert. The inspection often reveals that either
the mapping as such or the definition of the ontology concept it maps to are
problematic.

4 However, not all wrong assertions lead to inconsistencies, and not all inconsistencies
are due to wrong assertions.

dbr:San_Diego_
County,_California

dbr:Agua_Caliente_
Airport

 dbo:operator

foaf:name

dbo:Airport dbo:Settlement

dbo:PopulatedPlace

dbo:Place

dbo:Infrastructure

dbo:Architectural-
Structure

dbo:Organisation

dbo:Agentowl:disjoint
With

is a

 is a

 rdfs:range

“Agua Caliente Airport”

Wikipedia Infobox Wikipedia Infobox (Source)

DBpedia
Mappings Wiki

DBpedia
A-box

DBpedia
Ontology

Fig. 1: Example of the Extraction from DBpedia. Infoboxes in Wikipedia (lower
left) are mapped to the DBpedia ontology in the DBpedia Mappings Wiki (lower
right). With the help of those mappings, entities and assertions are extracted,
the DBpedia A-box (middle), which use the DBpedia ontology (top).

3.1 Preliminaries

DBpedia is extracted from Wikipedia infoboxes. In the DBpedia Mappings
Wiki5, infoboxes are mapped to classes in the DBpedia ontology, and infobox
keys are mapped to properties in the DBpedia ontology. These mappings are
created in a community-driven process.

5 http://mappings.dbpedia.org

The DBpedia extraction code uses those mappings to extract entities and as-
sertions which form the A-box of DBpedia. Fig. 1 illustrates the process. It shows
the infobox from the Wikipedia page of the Agua Caliente Airport6, together
with its source code7, which shows the use of an airport infobox. In the DBpedia
Mappings Wiki, this infobox is mapped to the ontology type dbo:Airport8, and
its infobox keys are mapped to properties in the DBpedia ontology. The figure
depicts two of those mappings: the infobox key name is mapped to foaf:name,
and the infobox key owner-oper is mapped to dbo:operator.

With the help of those mappings, instances and assertions are created. In
the example, there is a new resource created for the Wikipedia page at hand,
i.e., dbr:Agua Caliente Airport, as well as for the Wikipedia page linked to
in the infobox entry for owner-oper, i.e., dbr:San Diego County, California.
The resulting assertions are:

dbr:Agua_Caliente_Airport rdf:type dbo:Airport .

dbr:Agua_Caliente_Airport foaf:name "Agua Caliente Airport"@en .

dbr:Agua_Caliente_Airport dbo:operator

dbr:San_Diego_County,_California .

Furthermore, from the linked Wikipedia page for San Diego County, the following
axiom is created, using the same mechanism for a different infobox:

dbr:San_Diego_County,_California a dbo:Settlement .

Repeating this process for each page in Wikipedia leads to the DBpedia A-box,
which consists of millions of entities and assertions.

3.2 Datasets Used

Similar to our work proposed in [19], we use DBpedia together with the DOLCE-
Zero ontology [7, 8] in order to be able to add more top level disjointness axioms
and hence discover more inconsistencies. We use the most recent DBpedia 2016-
04 release with the corresponding ontology.

However, the mapping from the DBpedia 2016-04 ontology to DOLCE has an
issue with the mappings which have originally been defined as rdfs:subclassOf
relations, but been changed to owl:equivalentClass mappings in the current
release.9 This leads to certain problems, as this example illustrates:

6 https://en.wikipedia.org/wiki/Agua_Caliente_Airport, retrieved on December
6th, 2016

7 https://en.wikipedia.org/w/index.php?title=Agua_Caliente_

Airport&action=edit, retrieved on December 6th, 2016
8 Throughout this paper, we use the following names-

pace conventions: dbo=http://dbpedia.org/ontology/,
dbr=http://dbpedia.org/resource/, foaf=http://xmlns.com/foaf/0.1/,
rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#,
rdfs=http://www.w3.org/2000/01/rdf-schema#

9 See https://sourceforge.net/p/dbpedia/mailman/message/35452137/

dbo:GovernmentType owl:equivalentClass dul:Concept .

dbo:MusicGenre owl:equivalentClass dul:Concept .

From this, a reasoner would conclude that dbo:GovernmentType owl:equiva-

lentClass dbo:MusicGenre also holds. The class dbo:MusicGenre thereby be-
comes insatisfiable. In order to work around these issues, we have replaced all
owl:equivalentClass mappings between the DBpedia and DOLCE-Zero on-
tology with rdfs:subclassOf.10

3.3 Identifying and Grouping Inconsistencies

An inconsistency arises if an assertion (or a set of assertions) is incompatible
with the ontology that defines constraints on those assertions. In the exam-
ple in Fig. 1, the range of the relation dbo:operator is restricted to the class
dbo:Organisation. However, the object of the relation at hand is dbr:San Diego

County, California, which is an instance of dbr:Settlement.
From the ontology, we can see that dbo:Agent (which is a superclass of

dbo:Organisation) and dbo:Place (which is a superclass of dbo:Settlement)
are disjoint. Hence, the relation assertion, together with the object’s type, forms
an inconsistency.

For detecting such inconsistencies, we create minimal A-boxes, consisting of
a relation assertion and its subject’s and object’s types. Those are then loaded
into the HermiT reasoner [9], together with the ontologies. The reasoner com-
putes whether the A-box is consistent or not. Furthermore, the proof tree the
reasoner provides contains all statements that together form the inconsistency.11

In the example in Fig. 1, those consist of the object’s type assertion, the rela-
tion assertion, the range statement, as well as chain of subclass statements for
dbo:Organisation and dbo:Settlement up to dbo:Agent and dbo:Place, and
the disjointness axiom between the latter two.

Since we are interested in identifying wrong mapping assertions as well as
problems within the ontology, we identify the mapping statements that con-
tribute to an inconsistency. However, in DBpedia, there is no provenance infor-
mation which tracks which mapping element was used to create which assertion.
Hence, we first need to reconstruct that provenance information. For this recon-
struction, we use two sources:

1. The set of templates which are used on subject’s and object’s original Wiki-
pedia pages. That information is provided with the DBpedia release.

2. The mappings from the DBpedia Mappings Wiki translated to RDF using
the RML vocabulary. [4, 5]

In the first step, we identify those templates which are used on the subject’s
and object’s original Wikipedia page. In our running example, that is Infobox

10 Note that this change only weakens the original assertions, thus, it cannot introduce
additional inconsistencies.

11 There can be multiple proof trees for the same inconsistency. However, in our ap-
proach, we only pick one at random.

1 Given an assertion a (S r O)
2 Get T(S) and T(O) // templates used in the assertion’s subject’s and object’s Wikipedia page
3 MapR(r) = Mapping elements in T(S) that assign a relation r
4 For all asserted types T of S
5 MapT(S) = Mapping elements in T(S) that assign a type from T
6 For all asserted types of T of O
7 MapT(O) = Mapping elements in T(O) that assign a type from T
8

9 Use reasoner to compute consistency of a
10 If a is inconsistent
11 If explanation contains a
12 Mark all entries in MapR(r)
13 If explanation contains subject type assertion with type T
14 Mark all entries in MapT(S)
15 If explanation conatins object type assertion with type T
16 Mark all entries in MapT(O)
17

18 For all marked mapping elements
19 increase inconsistency counter for element
20 For all non−marked mapping elements
21 increase consistency counter for element

Fig. 2: Pseudocode for identifying mapping elements contributing to inconsisten-
cies

airport for the subject, and Infobox settlement, Authority control, and
See also for the object.

In a second step, we retrieve all mapping elements for those templates. From
that subset, we identify those which are used to assert the types and the relation
at hand. In our example, this would be the mapping elements that assert the
class dbo:Airport for Infobox airport (1), the relation dbo:organization for
the infobox key owner-oper (2), and the type dbo:Settlement for the Infobox

settlement (3).

When this identification is done, we run the reasoner to compute the in-
consistency, and, if the statement is inconsistent, the explanation. Using that
explanation, we mark all the mapping elements that are responsible for a state-
ment used in the explanation. With those marks, we maintain two counters for
each mapping element m: how often it was generating an assertion involved in an
inconsistency (inconsistency counter im), and how often it was not (consistency
counter cm). Figure 2 illustrates this approach.

In our example, im is increased for (2) and (3), i.e., the mapping elements
responsible for the relation assertion and the object type assertion,while cm is
increased for (1), i.e., the mapping element responsible for the subject type
assertion, is increased, since the type assertion for the subject was not involved
in the inconsistency.

3.4 Scoring Inconsistencies

Given the consistency and inconsistency counts for each mapping element, we
can compute a number of scores for each mapping element. Given the hypothesis
that a mapping element m is problematic, and the two counts for the statements
produced by m that were involved in explanations for inconsistencies (im) and
those that were not (cm), we first use two metrics borrowed from association
rule mining, i.e., support and confidence [2]:

s(m) :=
im
N

(1)

c(m) :=
im

im + cm
(2)

Here, N is the total number of statements in the knowledge base. As we are
looking only at relation assertions, N is roughly 17.6 million. In turn, this means
that while the confidence can easily grow towards 1 (e.g., if a wrong mapping
element produces mostly wrong statements leading to inconsistencies), this is
not true for support: even a mapping element leading to 100,000 inconsistent
cases (which is a mapping element which we would want to achieve a high score)
would have a support value of only 0.005. That makes it difficult to compute a
common score from the two, since, although they both theoretically produce a
score in the [0; 1] interval, the actual scores practically come in different scales.
Hence, to overcome this problem, we propose to use logarithmic support, defined
as

logs(m) :=
log(im + 1)

log(N + 1)
(3)

In contrast to standard support, logarithmic support works in orders of magni-
tude, i.e., a log support of 0.5 means that the order of magnitude of the counted
incoherences affects half the order of magnitude of all the axioms. Thus, a map-
ping element leading to 100,000 inconsistent cases, as discussed above, would
achieve a fairly high logarithmic support score of 0.69.

Finally, to assign ratings to the mapping elements and pick the most promis-
ing cases for inspection by an expert, we want to consider mapping elements
which achieve both a high (logarithmic) support, i.e., that lead to a significant
number of inconsistencies, and that have a high confidence, i.e., those incon-
sistencies are not mere noise. Hence, we use the harmonic mean of logarithmic
support and confidence as a final rating score for statements:

score(m) :=
2 · logs(m) · c(m)

logs(m) + c(m)
(4)

For our experiments, we computed mean (µ) and standard deviation (σ) of s,
logs, and c. We observe µs = 0.0002, σs = 0.003, µlogs = 0.179, σlogs = 0.139,
µc = 0.114, and σc = 0.260. This shows that the distribution of logs and c
actually resemble one another, and they can thus be safely combined using the
harmonic mean.

Using that rating function, we can group the output of the identified incon-
sistencies by mapping elements, assing a score to each mapping element, and
inspect the high scoring elements for an identification of common problems in
the construction process of DBpedia.

Note that in our running example, we had flagged two mapping elements: one
mapping the type dbo:Settlement to Infobox settlement, and one mapping
the infobox key owner-oper to dbo:operator. The property mapping has a
confidence of 0.153 and a logarithmic support of 0.377, leading to a score of
0.218. In contrast, the type mapping for the object has only a confidence of
0.0004, at a similar logarithmic support of 0.344, leading to a score of 0.0008.
Thus, in this case, the likelihood that the statements extracted from the property
mapping are involved in an inconsistency is much higher than the likelihood of
the object type mapping. Hence, given a suitable lower bound for the overall
score, we would examine the case only once. Here, an expert would diagnose that
the range assertion of dbo:operator is not compatible with a larger fraction of
the assertions using the property.

4 Findings

In this section, we report about the number of problems identified, as well as
present typical problems and proposed solutions.

4.1 Quantitative Results

In total, there are 63,981 mapping elements in the snapshot of the RML transla-
tion of the DBpedia Mappings Wiki we used in our experiments.12 Out of those,
3,454 are identified to produce a statement which is in one of the A-boxes we in-
spect.13 We identified a total number 1,117 (i.e., 32.3%) of mapping statements
involved in at least one inconsistency.

Fig. 3 depicts the distribution of the mapping elements that produce at least
one statement involved in an inconsistency. We can observe that there is a larger
number of mapping elements with confidence 1, i.e., all the statements they
produce are involved in inconsistencies. Furthermore, there is a larger cluster of
mapping elements with a confidence below 0.05, i.e., we can assume that the
inconsistencies are produced by other effects than the mapping element or the
ontology (e.g., wrong statements in Wikipedia, incorrect extraction of URIs from
hashed URLs, etc. – see, e.g., [19] for a discussion).

We mainly inspected those mapping elements which receive a high overall
score as defined in (4), i.e., those that are depicted in the top right corner of the
scatter plot. From those, we derived a set of typical problems.

12 http://rml.io/data/DBpediaAll.rml.nt, retrieved on November 2nd, 2016
13 This is indeed an interesting discrepancy. A larger number of mapping elements

produces literal-valued statements, which are out of scope of our inspection. Fur-
thermore, there might be outdated mappings for infoboxes no longer in use.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Confidence

L
o

g
a

ri
th

m
ic

 S
u

p
p

o
rt

Fig. 3: Distribution of flagged mapping elements according to logarithmic sup-
port and confidence. The three dashed lines depict the isometrics of the overall
score of 0.25, 0.5, and 0.75.

4.2 Mapping Errors

Pure erroneous mappings are scarce. In most cases, there is a mapping to a prop-
erty which seems correct, but the property has a different meaning defined in
the ontology, as can be seen by inspecting the domain and range of the property.
When inspecting the distributions of the actual usage of the property, however,
it becomes evident its intended semantics is often different from how it is under-
stood and used by the crowd contribution to the DBpedia Mappings Wiki.

Mapping to Wrong Property In the simplest case, an infobox key is mapped
to a wrong property in the DBpedia ontology, where a correct one actually exists.

One example for a wrong mapping is the branch key in the Military unit

infobox, which is mapped to dbo:militaryBranch. However, that property ex-
pects a person in the subject position. The correct property would be dbo:com-

mandStructure. This affects 12,172 assertions in DBpedia (i.e., 31% of all as-
sertions of dbo:militaryBranch).

Another interesting example is the mapping of depictions in various infoboxes
(e.g., music covers) to dbo:picture. The extraction code does not generate a link
to the media object as such, but tries to parse the image file name into a DBpedia
resource. Thus, the 3,354 assertions using that property are mostly inconsistent,
covering mostly places (2,021, or 64.5%) and persons (465, or 23.0%), . This
is one of the rare cases where a mapping should not be altered, but discarded
altogether. Some instantiations of that problem are the statements

Fig. 4: Three example infoboxes (from the Wikipedia pages Justify My Love,
Brixton Academy, and Cannes)

dbo:Brixton_Academy dbo:picture dbo:Brixton .

dbo:Justify_My_Love dbo:picture dbo:Madonna_(entertainer) .

The corresponding two infobox snippets are depicted in Fig. 4 (left and mid-
dle).

A similar example is the mapping of the property dbo:mayor. For a majority
of instances of that property (436, or 47.3%), the corresponding party is ex-
tracted as an object of the property, while a considerably smaller fraction (234,
or 25.4%) are actually persons. A corresponding infobox is depicted on the right
hand side in Fig. 4.

Missing Properties Similarly to mappings to wrong properties, some infobox
keys are mapped to an inadequate ontology property, but a correct one cannot
be found in the ontology. Here, the ontology has to be enhanced.

The property dbo:president is designed to assert that a person is the pres-
ident of an organization (e.g., a state or a company). However, this is only the
minority of the cases (2,600 assertions, or 23.7%). The vast majority of the sub-
jects is of type dbo:Person (8,354, or 76.2%). Here, the property is used to assert
that a person (e.g., a minister) was serving for a certain president. Here, the
introduction of a new property (e.g., dbo:servedFor) should be considered.

Another example is the mapping of the infobox key instruments in the
Infobox music genre to dbo:instrument, whose domain is dbo:Artist (i.e.,
the property is intended to relate a artist to the instrument (s)he plays). This
affects 707 assertions in total. Again, the introduction of a new property (e.g.,
dbo:characteristicInstrument) should be considered.

Further examples include the use of dbo:species for fictional characters
in movies or books, while it is intended (and most widely used) for defining

biological taxonomies, or dbo:director, which is meant to be the director of a
movie, but also used to denote, e.g., the director of a festival or other event.

4.3 Problems in the Ontology

While some errors can be tracked down to individual mappings, others keep
recurring for many infobox types. Hence, their root is usually not the map-
pings as such, but problematic definitions in the ontology. One example is the
dbo:operator property, which has been used as a running example above. While
having Organisation as its defined range, out of 13,425 objects of dbo:operator,
9,529 are of that type, while 1,092 have populated places (i.e., cities, counties,
etc.) being their operator. This holds for many classes, such as airports, libraries,
or stadiums. In that case, the range of dbo:operator should either be broadened,
or cities, counties etc. should be a subclass of both dbo:Place and dbo:Agent

in order to allow for the observed polysemy (cities, at least as they are used in
DBpedia, are both a geographic and a social object).

A similar case is the range of properties like dbo:architect, dbo:designer,
dbo:engineer, etc. Those often define a dbo:Person in the range, but in many
cases, there are companies in the object position: dbo:architect has 1,480
(8.6%) organizations and 8,538 (49.5%) persons, designer has 806 organizations
(7.8%) and 5,298 (50,4%) persons, and dbo:engineer has even a majority 153
(58.4%) organizations and 32 (12.2%) persons. Here, the range of those properties
should be broadened to dbo:Agent for covering both persons and organizations.

A large-scale problematic mapping is the mapping of the property dbo:team,
which is mainly used for subjects of type dbo:CareerStation (351,580 out of
1,287,645, or 27.3%)14, but also for dbo:Person (160,452 out of 1,287,645, or
12.5%). The two are clearly not compatible, and since the corresponding super
property in the DOLCE-Zero (dul:isSettingFor) expects a dul:Situation

in the subject position, the latter cases lead to inconsistencies. Here, a more
uniform usage of the property and hence, a more consistent modeling of athletes
and the team(s) they belong to over time, should be enforced.

Another large-scale issue in the ontology is the use of bands (i.e., dbo:Band)
and musical artists (i.e., dbo:MusicalArtist) together with properties that ex-
pect either one or the other (e.g., dbo:associatedBand. However, the corre-
sponding objects are more or less equally distributed across both classes. In fact,
the corresponding infobox keys, which do not distinguish between associated mu-
sical artists and bands, are currently mapped to both dbo:associatedBand and
dbo:associatedMusicalArtist. Here, we propose the refactoring into a com-
mon property dbo:associatedMusicAct, whose range is the union of dbo:Band
and dbo:MusicalArtist.

4.4 Problems with the Mapping to DOLCE-Zero

The mapping to DOLCE-Zero provides additional disjointness axioms which
help discovering more inconsistencies. However, in a few cases, a property is

14 A large majority of the subjects is not typed at all.

used for a certain purpose in the majority of cases, which is incompatible with
the formalization DOLCE.

One such example is the property dbo:commander, although not defining an
explicit domain in the DBpedia ontology, is a subproperty of dul:copartici-

patesWith, which has the domain dul:Object by inference using the DOLCE-
Zero ontology, which is disjoint with dul:Event. However, the majority (i.e.,
11,831 out of 12,841, or 92.1%) of all subjects using this property are dbo:Mili-
taryConflicts, a subclass of dul:Event. Those are mainly created by a map-
ping in the Military conflict infobox.

5 Conclusion and Outlook

In this paper, we have introduced a data-driven approach targeted at increasing
the data quality in DBpedia. The proposed approach searches for inconsisten-
cies with the underlying ontology, also leveraging the linked top level ontology
DOLCE-Zero, and tries to identify common root causes of those inconsistencies.

With our approach, we were able to identify quite a few problems of different
kinds. We found pure mapping errors, hints for missing properties, as well as
problematic domain and range restrictions in the DBpedia ontology.

To leverage the results, we have started fixing the problematic mappings,
where appropriate, so that the next version of DBpedia will not contain the
problematic assertions anymore. In cases where changes to the ontology are
required, be it domain/range changes or the introduction of new properties,
discussion threads have been started, since some of the changes may have long-
reaching consequences and should thus be considered carefully.

For the moment, an expert has to review the problems identified in our
approach, and manually classify them as wrong mappings, problems in the on-
tology, etc. In future work, we aim at developing a set of data-driven heuristics
which perform these classifications automatically. As a long term high level vi-
sion, we foresee the creation of a knowledge graph validator which, provided
with a knowledge graph and statement-level provenance information (i.e., what
were the mechanisms that led to the inclusion of a particular assertion in the
knowledge graph), issues fine-grained qualified suggestions on how to revise the
creation process for increasing the knowledge graph’s data quality. Tooling-wise,
this could be implemented in an automatic reporting system, or even in the
mappings Wiki for issuing live warnings upon editing time.

The work presented in this paper is a first step in this direction. While most
of the approaches for increasing the data quality in knowledge graphs discussed
in the literature so far are pure post-processing approaches which aim at the
identification, elimination, or correction of problematic statements, the work
presented in this paper is one of the rare examples that go one step beyond
by identifying the root causes and fixing the cause of the data quality problem
instead of remedying the symptoms.

Acknowledgements

The author would like to thank the numerous people involved in the DBpedia
project for their past, ongoing, and future efforts, as well as the authors of [4]
for providing the DBpedia mappings in RML.

References

1. Acosta, M., Zaveri, A., Simperl, E., Kontokostas, D., Auer, S., Lehmann, J.: Crowd-
sourcing Linked Data quality assessment. In: The Semantic Web–ISWC 2013,
LNCS, vol. 8219, pp. 260–276. Springer, Berlin Heidelberg (2013)

2. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In:
Proc. 20th int. conf. very large data bases, VLDB. vol. 1215, pp. 487–499 (1994)

3. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data – The Story So Far. Interna-
tional journal on semantic web and information systems 5(3), 1–22 (2009)

4. Dimou, A., Kontokostas, D., Freudenberg, M., Verborgh, R., Lehmann, J., Man-
nens, E., Hellmann, S.: DBpedia Mappings Quality Assessment. In: International
Semantic Web Conference – Posters and Demonstrations (2016)

5. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de
Walle, R.: Rml: A generic language for integrated rdf mappings of heterogeneous
data. In: LDOW (2014)

6. Fleischhacker, D., Paulheim, H., Bryl, V., Völker, J., Bizer, C.: Detecting Errors in
Numerical Linked Data Using Cross-Checked Outlier Detection. In: The Semantic
Web–ISWC 2014, LNCS, vol. 8796, pp. 357–372. Springer, Switzerland (2014)

7. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A.: Sweetening WordNet with
DOLCE. AI Magazine 24(3), 13–24 (2003)

8. Gangemi, A., Mika, P.: Understanding the semantic web through descriptions and
situations. In: On The Move to Meaningful Internet Systems 2003: CoopIS, DOA,
and ODBASE, pp. 689–706. Springer (2003)

9. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: an owl 2 reasoner.
Journal of Automated Reasoning 53(3), 245–269 (2014)

10. Hellmann, S., Stadler, C., Lehmann, J., Auer, S.: Dbpedia live extraction. In: OTM
Confederated International Conferences” On the Move to Meaningful Internet Sys-
tems”. pp. 1209–1223. Springer (2009)

11. Jain, P., Hitzler, P., Yeh, P.Z., Verma, K., Sheth, A.P.: Linked Data Is Merely
More Data. In: AAAI Spring Symposium: linked data meets artificial intelligence.
vol. 11 (2010)

12. Lehmann, J., Bühmann, L.: ORE – a tool for repairing and enriching knowledge
bases. In: The Semantic Web–ISWC 2010, LNCS, vol. 6497, pp. 177–193. Springer,
Berlin Heidelberg (2010)

13. Lehmann, J., Gerber, D., Morsey, M., Ngomo, A.C.N.: DeFacto – Deep Fact Vali-
dation. In: The Semantic Web–ISWC 2012, LNCS, vol. 7649, pp. 312–327. Springer,
Berlin Heidelberg (2012)

14. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia – A Large-
scale, Multilingual Knowledge Base Extracted from Wikipedia. Semantic Web
Journal 6(2) (2013)

15. Ma, Y., Gao, H., Wu, T., Qi, G.: Learning Disjointness Axioms With Association
Rule Mining and Its Application to Inconsistency Detection of Linked Data. In:
Zhao, D., Du, J., Wang, H., Wang, P., Ji, D., Pan, J.Z. (eds.) The Semantic Web
and Web Science, Communications in Computer and Information Science, vol. 480,
pp. 29–41. Springer, Berlin Heidelberg (2014)

16. Paulheim, H.: Identifying Wrong Links between Datasets by Multi-dimensional
Outlier Detection. In: International Workshop on Debugging Ontologies and On-
tology Mappings. CEUR Workshop Proceedings, vol. 1162, pp. 27–38 (2014)

17. Paulheim, H.: Knowledge graph refinement: A survey of approaches and evaluation
methods. Semantic Web 8(3), 489–508 (2017)

18. Paulheim, H., Bizer, C.: Improving the Quality of Linked Data Using Statistical
Distributions. International Journal on Semantic Web and Information Systems
(IJSWIS) 10(2), 63–86 (2014)

19. Paulheim, H., Gangemi, A.: Serving DBpedia with DOLCE–More than Just
Adding a Cherry on Top. In: International Semantic Web Conference. LNCS, vol.
9366. Springer, International (2015)

20. Paulheim, H., Stuckenschmidt, H.: Fast approximate a-box consistency checking
using machine learning. In: Extended Semantic Web Conference. pp. 135–150.
Springer (2016)

21. Russell, S., Norvig, P.: Artificial Intelligence: a Modern Approach. Pearson, London
(1995)

22. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the Linked Data Best
Practices in Different Topical Domains. In: International Semantic Web Confer-
ence. LNCS, vol. 8796. Springer, International (2014)

23. Sheng, Z., Wang, X., Shi, H., Feng, Z.: Checking and Handling Inconsistency of
DBpedia. In: WISM’12. pp. 480–488 (2012)

24. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: A Core of Semantic Knowledge
Unifying WordNet and Wikipedia. In: 16th international conference on World Wide
Web. pp. 697–706. ACM, New York (2007)

25. Töpper, G., Knuth, M., Sack, H.: DBpedia Ontology Enrichment for Inconsistency
Detection. In: Proceedings of the 8th International Conference on Semantic Sys-
tems. pp. 33–40. ACM, New York (2012)

26. Waitelonis, J., Ludwig, N., Knuth, M., Sack, H.: WhoKnows? – Evaluating Linked
Data Heuristics with a Quiz that Cleans Up DBpedia. International Journal of
Interactive Technology and Smart Education 8(4), 236–248 (2011)

27. Wienand, D., Paulheim, H.: Detecting Incorrect Numerical Data in DBpedia.
In: The Semantic Web: Trends and Challenges, LNCS, vol. 8465, pp. 504–518.
Springer, International (2014)

