
Seamless Integration of Heterogeneous UI Components

Heiko Paulheim
SAP Research CEC Darmstadt

Bleichstrasse 8
64283 Darmstadt, Germany
heiko.paulheim@sap.com

Atila Erdogan
SAP Research CEC Darmstadt

Bleichstrasse 8
64283 Darmstadt, Germany

a.erdogan@sap.com

ABSTRACT
Component-based software engineering is a paradigm aim-
ing at better ways to reuse existing code and to distribute
work across teams. Integrating UI components developed
with different technologies can be a difficult task which can
quickly can lead to code-tangling and loss of modularity.
In this demo, we present a prototype framework for inte-
grating heterogeneous UI components, using RDF and for-
mal ontologies for unambiguous event and data exchange
and minimizing dependencies between integrated compo-
nents. We will show an example from the emergency man-
agement domain using components written in Java and Flex
and demonstrate tight, seamless integration, including drag-
ging and dropping objects from Java to Flex and vice versa.

Author Keywords
User Interfaces, Integration, Component-based Software, On-
tologies

ACM Classification Keywords
D.2.2 Software Engineering: Design Tools and Techniques—
User Interfaces; D.2.13 Software Engineering: Reusable Soft-
ware—Reuse Models

General Terms
Design, Algorithms

INTRODUCTION
The development of a system’s user interface produces sig-
nificant workload; the time devoted to UI development sums
up to 50% of a system’s total development time [14]. Thus,
it is desirable to reuse existing user interface components
in order to reduce development time. On the other hand,
the reused components are supposed to seamlessly integrate
with each other in the composed system.

We use the term seamless integration to indicate that UI
components are not just rendered next to each other, but that
the user can interact with them as if they were one coherent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’10, June 19–23, 2010, Berlin, Germany.
Copyright 2010 ACM 978-1-4503-0083-4/10/06...$10.00.

piece of software, as proposed by [2] and [26]. Seamless
integration includes cooperative information visualization,
dragging and dropping of information items between com-
ponents, and so on.

UI components can be developed with numerous technolo-
gies. Therefore, it is likely that reusing existing UI com-
ponents also involves the task of integrating heterogeneous
components. Existing frameworks for UI integration are most
often very limited in facilitating cross-component interac-
tion [4], and the use of heterogeneous technologies further
complicates integration.

In this demo, we introduce a framework capable of seamless
integration of heterogeneous UI components while main-
taining modularity. Based on a scenario from the domain of
emergency management, we will show an application com-
posed of both Java and Flex based components, and discuss
how they can be integrated using our framework. We will
show how events can be unambiguously exchanged between
both kinds of components to produce a uniform behavior,
and we will also demonstrate drag and drop from Java to
Flex components and vice versa.

DEMO SCENARIO
In this demo, we show a scenario from the area of emer-
gency management. The overall application consists of sev-
eral components, each providing different relevant function-
ality, such as planning tasks, managing resources, visualiz-
ing maps, processing messages, simulating the expansion of
floodings or fires, and so on. In this demo, we focus on two
complex UI components (see Fig. 1): a resource manage-
ment component, implemented in Flex, is used for brows-
ing, viewing, and searching resources, such as fire brigade
and ambulance cars, and a mission account component, im-
plemented in Java, which is used for managing current and
predicted problems, as well as for planning tasks to address
those problems.

In this demo, we will show two central interactions with
those components that require interoperability between those
components. First, related information should be highlighted
when selecting an object in one application, using the brushing-
and-linking paradigm [7]. In our particular case, the re-
sources allocated to a task should be highlighted when se-
lecting a resource, and vice versa. Second, resources should
be allocated to tasks by drag and drop from the resource
management component to a task in the mission account
component.

Figure 1. A screenshot with two UI components: a resource management component implemented in Flex (left) and a mission account component
implemented in Java (right). The white dashed lines indicate the borders of the components, the dark frames are the containers displaying the
components in a common frame.

LIBRARIES FOR LINKING FLEX AND JAVA
For implementing the integration framework, we have taken
five libraries into consideration: JFlash [10], JFlashPlayer
[19], ComfyJ [20], DJ Project Native Swing [5], and JDIC
[11]. While JFlash is a pure Java implementation, JFlash-
Player and ComfyJ use an ActiveX bridge to Flex (and are
therefore restricted to Windows), and DJ Project and JDIC
embed Flex applications via a web browser (and are there-
fore platform independent). We have analyzed those libraries
with regards to stability, flexibility in message exchange be-
tween Java and Flex, and API simplicity as well as avail-
ability of documentation. Table 1 sums up the results of this
analysis.

JFlash is currently an Alpha version and probably discon-
tinued (the last update dates back to 2006), therefore, we
performed no further analysis with it. ComfyJ bears a mas-
sive coding overhead, since the ActiveX calls are not encap-
suled, and with JDIC, the developer has to write additional
JavaScript code to enable message exchange between Java
and Flex applications.

Therefore, we have shortlisted only JFlashPlayer and DJ Project
Native Swing for the implementation of our prototype. In
more detailed tests, it turned out that drop events from Java
to Flex cannot be captured precisely with DJ Project Native
Swing (it can be detected that a drop event has occured some-
where within the Flex component, but not where exactly),
thus narrowing the possibilities using this way of integration.
Our prototype is therefore implemented with JFlashPlayer.

FRAMEWORK ARCHITECTURE
We have developed a prototype integration framework which
allows the composition and seamless integration of UI com-

Library License St
ab

ili
ty

Fl
ex

ib
ili

ty
in

M
es

sa
ge

E
xc

ha
ng

e

A
PI

Si
m

pl
ic

ity

D
oc

um
en

ta
tio

n

JFlashPlayer Commercial + + + +
ComfyJ Commercial + + - +
DJ Project Open Source + - + +
JDIC Open Source + - - +

Table 1. A comparison of four APIs for linking Flex and Java.

ponents developed with different technologies. The aim was
to achieve these aims while preserving modularity and main-
tainability of the integrated system, therefore, the depen-
dencies between integrated components should be limited as
much as possible.

Each of the integrated components runs in a container, which
displays the component within a common frame (see Fig. 2).
The containers are connected via an event exchange bus,
providing services for interoperability, such as sending and
receiving events, marshalling and unmarshalling objects in
a common representation, and handling drag and drop be-
tween components.

Events can be exchanged both as directed component-to-
component communication as well as by broadcasting. How-
ever, we encourage the use of broadcasting as this reduces
the number of direct dependencies between components and
helps preserving modularity of the overall integrated system.

Figure 2. Different components run in containers. Containers are re-
sponsible for displaying components in a common frame, as well as
providing interoperability services via an event bus.

Further, we allow both decentralized and centralized event
processing [4], the latter based on a reasoning component
[17]. In this paper, we will concentrate on the decentralized
case.

There are specialized container implementations for each
technology. Since the integration framework itself is imple-
mented in Java, the container for Java components can be
implemented quite straightforwardly. The container for Flex
uses the JFlashPlayer library, as discussed above.

UNAMBIGUOUS EVENT AND DATA EXCHANGE
The integration of UI components requires a common for-
mal model [4], and so does data exchange between those
components. Since ontologies are a well-proven formalism
for creating such models in integration tasks, we use ontolo-
gies modeling both the system and its UI components as well
as the information objects they process.

Based on these ontologies, the instances of components, events,
and data objects can then be represented in RDF [22]. Such
a universal representation has been proposed as an inter-
lingua for developing distributed systems, reducing the com-
plexity of integrating N components from N2 to N [21].
RDF can be serialized in different syntactic forms, including
XML. Fig. 3 shows the serialization of an event and the data
object contained therein in RDF-XML.

The use of RDF as an exchange format has significant ad-
vantages, compared to other approaches, such as using plain
XML or JSON: an ontology is used to define each of the
events and data objects exchanged and thus provides the ex-
act semantics of each event exchanged between two compo-
nents. Thus, there is a standardized knowledge base grounded
on formal logics, which provides a mutual understanding of
the events and avoids misinterpretations, e.g. by making hid-
den assumptions about the contents of a certain XML tag
or attribute [23]. This is particularly necessary when using
components created by different developers.

Two ontologies are used for defining the space of possi-
ble events exchanged between components [16]: An ontol-

ogy of UIs and interactions defines the possible user ac-
tions (selecting, dragging, dropping objects etc.) as well as
system actions (modifying, displaying, highlighting objects
etc.) which can cause an event. An ontology of the system’s
real world domain (emergency management in the case of
this demo) defines the information objects that may be in-
volved in events.

With the help of these ontologies, the possible events are
clearly defined and semantically unambiguous. The ontolo-
gies can be used as a part of the system specification, as they
provide the agreed vocabulary and knowledge shared by all
developers [6].

For exchanging events, each container’s object marshaling
and unmarshaling service can translate the events to RDF
and back to its internal representation – Java objects in the
case of Java components, Flex objects for Flex components.
The first interaction case – linking selected objects – is im-
plemented as follows:

When the user selects a task object in the mission account
component, an event is created, providing the following state-
ment encoded in RDF: “the user has selected an object which
represents a task”. The detailed data of the Java object itself
(consisting of the task’s ID, name, place, time, etc.) are also
provided in the RDF encoding. To this end, the developer
has to invoke a method on the container, providing the URI
describing the event in the ontology. The further processing
is performed by the framework. The event is then broad-
cast to and received by all other containers, using their event
exchange services.

The resources component reads the event and decodes that
a task object has been selected. The object contained in the
event is converted from RDF to a Flex object. This object is
then handed to the Flex application, which can find the re-
lated resource objects and highlight those. The component
developer has to hook her code in here and implement a suit-
able reaction.

DRAG AND DROP WITH USER ASSISTANCE
Implementing drag and drop means an even tighter integra-
tion. When a drop action is sensed on some component, the
dropped object’s origin is most often a different component.
In our scenario, this includes the cases that a Java object is
dropped on a Flex component, and vice versa. We show a
uniform solution for both directions in this demo.

In our framework, drag and drop is implemented with Java
Swing, which allows transferring an object. The object trans-
ferred contains the RDF representation of the dragged ob-
ject. Again, the drag and drop implementation for the Java
container is quite straightforward.

In the Flex container, an invisible Java proxy is automati-
cally created for each drag source and each drop target. The
drag and drop service keeps track of the drag source and drop
target components in Flex and their mapping to the proxies.
When a drag action is sensed in the Flex component, the

Figure 3. Events are exchanged in a common RDF-XML representation. Developers may use the event inspector to analyze the event exchange in
detail.

Figure 4. Drag and drop with non-Java components is implemented
by creating Java proxies which handle drag and drop on the system
level. With this mechanism, drag and drop from/to Java to/from non-
Java components can be performed as well as between two non-Java
components.

dragged Flex object is gathered, marshaled in RDF, and a
drag action is emulated using the corresponding proxy com-
ponent. When the object is dropped to a Java component,
the effect is thus the same as if the drag would have started
at a real Java component.

Likewise, when a drop action is sensed on a Flex component,
a drop action is emulated on the corresponding Java proxy.
With the help of this drop action, a drag end action is sent to
the originating component, and the originally dragged object
can be obtained, converted to a Flex object, and processed
further. The mechanism also works if proxies are involved
on both the drag and the drop side (i.e. for dragging and
dropping from Flex to Flex or to another non-Java compo-

nent), thus, the framework has one mechanism supporting
every kind of drag and drop interaction (see Fig. 4).

In applications with many components, the user may not al-
ways know where a dragged object might be dropped, and
with which effect. Similarly to the linking interaction case
described above, components may broadcast events that an
object has been dragged. Each component receiving this
event may then analyze the event and the object contained
therein. Based on this information, the component may then
highlight the drop-sensitive area and provide a tooltip de-
scribing the type of action that a drop action would cause
on that area, as shown in Fig. 5. Broadcasting another event
when the drag action ends is necessary for putting the high-
lighted components back into a normal state.

RELATED WORK
There are different approaches for integrating UI compo-
nents, including component and plugin based systems, web
portals and mash-ups. Although they are valid approaches
for simply embedding components in a common frame, the
means for seamless integration, as described in this paper,
are still rather limited [4]. Furthermore, despite the large va-
riety of integration approaches, only a few explicitly address
problems of cross-technology integration and often focus
only on information visualization [15]. General approaches
allowing for tight integration of heterogeneous components
are only rarely seen.

Component and plugin based approaches most often expect
the plugins to follow a certain architectural style and pro-
gramming language. There are, however, a few examples
explicitly directed at heterogeneous components, such as the
OpenInterface workbench [13]. This platform, whose focus
is on multi-modal interactions with different hardware de-

Figure 5. Drag and drop is made possible across components in differ-
ent technologies. Additional user assistance is provided by highlighting
possible drop targets upon a drag action and augmenting them with
tooltips.

vices, allows components implemented with different tech-
nologies to communicate via exposed interfaces and pro-
vides tool support for creating the glue layer for making
the components cooperate. The approach described in [12]
focuses on integrating widgets from heterogeneous widgets
platforms by using abstract models of those widgets and
combines those models with MDA methods.

The CRUISe integration framework [18] uses the notion of
user interface services for integrating different user inter-
faces, including Flex and HTML/JavaScript based compo-
nents. Using a user interface definition language, they also
focus on dynamic retrieval and binding of components, which
is out of scope of our approach. The approach shown in [26],
which is probably the closest to the one shown in this demo,
uses wrappers for components implemented with different
technologies, which are responsible for data conversion and
communication. XML is used for communication between
components using an event bus.

Portals are a technology for bringing together contents from
different applications, encapsulated in so-called portlets. Port-
lets following standards such as the JSR 286 standard [9]
can be integrated in different portal platforms and may con-
tain components developed with different technologies. An
overview of such platforms is given in [1]. Those platforms
offer a large variety of functionality, such as Single Sign On
and portlet layouting, and the 2.0 version of the JSR port-
let standard also offers a basic event processing mechanisms
between portlets, including user-defined events. Mash-ups
differ from portals as they use less standardized, light-weight
frameworks and rather address end users and semi-professional
programmers than professional software developers. In [25],
a survey of different mash-up platforms is given.

Unlike the work presented in this paper, most of those ap-
proaches use the exposed APIs of the integrated components,
and the developer has to write code invoking one component

from another one (either manually or supported by tools).
This leads to code-tangling and an integrated system which
not modular and therefore hard to maintain.

CONCLUSION AND OUTLOOK
The approach shown in this demo provides a uniform ap-
proach for integrating heterogeneous UI components using
formal ontologies for event and data exchange. Modular-
ity is maintained by avoiding direct calls between compo-
nents. As discussed in [24], such an approach leads to more
flexible and modular integrated systems. Furthermore, we
claim that meaningful and misinterpretation-free integration
can only be achieved with using formal semantic models
of the exchanged data, instead of naming conventions and
data schemas. Thus, we use RDF, grounded in ontologies,
for event and data exchange. By using this inter-lingua, the
complexity of integrating components implemented with N
different technologies is reduced from N2 to N . The devel-
oper can make use a framework with containers for different
technologies which handle the coordination between hetero-
geneous components.

We have presented a framework for seamless integration of
UI components developed using different technologies. In
the demo, we have shown a real-world application from the
domain of emergency management, where UI components
written in Flex and Java have been integrated to form a con-
sistent application. With our framework, seamless integra-
tion such as dragging and dropping objects from Flex to Java
components and vice versa is possible, and presented a drag
and drop mechanism with additional user assistance.

For simple interaction patterns, such as “When selecting a
resource, highlight all the tasks that are assigned to this re-
source”, the components may easily determine the possible
drop-sensitive areas and tooltips by themselves. If the inter-
action patterns become more complex, such as “When se-
lecting a task, highlight all the free resources that are ad-
equate for this task”, a vast amount of domain knowledge
may be necessary for evaluating the additional conditions
(in this example: finding adequate resources). As sketched
above, our framework foresees centrally mediated event ex-
change using a reasoner for accounting for those cases. In
[17], we have shown that even in such complex cases, the
framework’s performance is still acceptable.

So far, we have only concentrated on integrated UIs that
run on a single, standard desktop PC. Multi-modal UIs, e.g.
combining hand-held devices with large display walls, are
not yet considered in our approach. However, by adding for-
mal ontologies of hardware devices, such as the FIPA device
ontology [8], our approach could be extended to not only
integrate UI components on different software, but also on
different hardware platforms.

ACKNOWLEDGMENTS
The work presented in this paper has been partly funded by
the German Federal Ministry of Education and Research un-
der grant no. 01ISO7009.

REFERENCES
1. A. Akram, D. Chohan, X. D. Wang, X. Yang, and

R. Allan. A Service Oriented Architecture for Portals
Using Portlets. In UK e-Science All Hands Conference,
2005.

2. J. Amsden. Levels Of Integration - Five ways you can
integrate with the Eclipse Platform. Technical report,
Eclipse Corner, 2001.
http://www.eclipse.org/articles/
Article-Levels-Of-Integration/
levels-of-integration.html, accessed
03/17/2010.

3. G. Calvary, T. C. N. Graham, and P. Gray, editors.
Proceedings of The 1st ACM SIGCHI Symposium on
Engineering Interactive Computing Systems
(EICS’2009). ACM, 2009.

4. F. Daniel, J. Yu, B. Benatallah, F. Casati, M. Matera,
and R. Saint-Paul. Understanding UI Integration: A
Survey of Problems, Technologies, and Opportunities.
IEEE Internet Computing, 11(3):59–66, 2007.

5. C. Deckers. The DJ Project Native Swing Website.
http://djproject.sourceforge.net/ns/
index.html, 2009.

6. G. Dobson and P. Sawyer. Revisiting Ontology-Based
Requirements Engineering in the age of the Semantic
Web. In International Seminar on Dependable
Requirements Engineering of Computerised Systems at
NPPs, Institute for Energy Technology (IFE), Halden,
2006.

7. S. G. Eick and G. J. Wills. High Interaction Graphics.
European Journal of Operational Research,
84:445–459, 1995.

8. F. for Intelligent Phyiscal Agents. FIPA Device
Ontology Specification, 2002. http://www.fipa.
org/specs/fipa00091/index.html.

9. S. Heppner. JSR 286: Portlet Specification 2.0. http:
//www.jcp.org/en/jsr/detail?id=286,
2008.

10. java.net. JFlash Website.
https://jflash.dev.java.net/, 2006.

11. java.net. JDIC - JDesktop Integration Components
Website. https://jdic.dev.java.net/, 2008.

12. D. Kotsalis. Managing Non-Native Widgets in
Model-Based UI Engineering. In Calvary et al. [3],
pages 313–316.

13. J.-Y. L. Lawson, A.-A. Al-Akkad, J. Vanderdonckt, and
B. Macq. An Open Source Workbench for Prototyping
Multimodal Interactions Based on Off-The-Shelf
Heterogeneous Components. In Calvary et al. [3],
pages 254–254.

14. B. A. Myers and M. B. Rosson. Survey on user
interface programming. In CHI ’92: Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 195–202, New York, NY, USA, 1992.
ACM.

15. C. North and B. Shneiderman. Snap-together
visualization: a user interface for coordinating
visualizations via relational schemata. In AVI ’00:
Proceedings of the working conference on Advanced
visual interfaces, pages 128–135, New York, NY, USA,
2000. ACM.

16. H. Paulheim. Ontologies for User Interface Integration.
In A. Bernstein, D. R. Karger, T. Heath,
L. Feigenbaum, D. Maynard, E. Motta, and
K. Thirunarayan, editors, The Semantic Web - ISWC
2009, volume 5823 of Lecture Notes in Computer
Science, pages 973–981. Springer, 2009.

17. H. Paulheim. Efficient Semantic Event Processing:
Lessons Learned in User Interface Integration. In
Proceedings of the 7th Extended Semantic Web
Conference, 2010. To appear.

18. S. Pietschmann, M. Voigt, A. Rümpel, and K. Meißner.
CRUISe: Composition of Rich User Interface Services.
In M. Gaedke, M. Grossniklaus, and O. Dı́az, editors,
Proceedings of the 9th International Conference on
Web Engineering (ICWE 2009), Edition 5648, pages
473–476, San Sebastian, Spain, June 2009. Springer.

19. V. Software. JFlashPlayer Web Page. http:
//www.jpackages.com/jflashplayer, 2009.

20. TeamDev. ComfyJ Website.
http://www.teamdev.com/comfyj/, 2010.

21. M. Uschold and M. Gruninger. Ontologies: Principles,
methods and applications. Knowledge Engineering
Review, 11:93–136, 1996.

22. W3C. Resource Description Framework (RDF):
Concepts and Abstract Syntax.
http://www.w3.org/TR/rdf-concepts/,
2004.

23. X. Wang, R. Gorlitsky, and J. S. Almeida. From XML
to RDF: How Semantic Web Technologies Will
Change the Design of ’Omic’ Standards. Nature
Biotechnology, 23(9):1099–1103, 2005.

24. U. Westermann and R. Jain. Toward a Common Event
Model for Multimedia Applications. IEEE MultiMedia,
14(1):19–29, 2007.

25. J. Yu, B. Benatallah, F. Casati, and F. Daniel.
Understanding Mashup Development. IEEE Internet
Computing, 12(5):44–52, Sept.-Oct. 2008.

26. J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel,
and M. Matera. A framework for rapid integration of
presentation components. In C. L. Williamson, M. E.
Zurko, P. F. Patel-Schneider, and P. J. Shenoy, editors,
WWW, pages 923–932. ACM, 2007.

http://www.eclipse.org/articles/Article-Levels-Of-Integration/levels-of-integration.html
http://www.eclipse.org/articles/Article-Levels-Of-Integration/levels-of-integration.html
http://www.eclipse.org/articles/Article-Levels-Of-Integration/levels-of-integration.html
http://djproject.sourceforge.net/ns/index.html
http://djproject.sourceforge.net/ns/index.html
http://www.fipa.org/specs/fipa00091/index.html
http://www.fipa.org/specs/fipa00091/index.html
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286
https://jflash.dev.java.net/
https://jdic.dev.java.net/
http://www.jpackages.com/jflashplayer
http://www.jpackages.com/jflashplayer
http://www.teamdev.com/comfyj/
http://www.w3.org/TR/rdf-concepts/

	Introduction
	Demo Scenario
	Libraries for Linking Flex and Java
	Framework Architecture
	Unambiguous Event and Data Exchange
	Drag and Drop With User Assistance
	Related Work
	Conclusion and Outlook
	Acknowledgments
	REFERENCES

